STATEMENT OF INTENT
These clinical practice guidelines are meant to be a guide for clinical practice. It is based on the best available evidence, knowledge and clinical experience at the time of development. These guidelines do not guarantee the best outcome in every case and the responsibility lies on the individual healthcare provider to manage his/her patient based on the clinical manifestations of the patient and the management options available locally.

PERIOD OF VALIDITY
These clinical practice guidelines were issued in 2017 and will be reviewed in 4 years (2021) or earlier depending on the availability of new evidence. NHAM will inform either the Chairperson of this current CPG committee or the National Advisor of the related specialties when the time for updating this CPG is due. Prior to commencement of updating this CPG, a discussion to determine the need for an update, including the scope of the CPG updates should be done. If there is a need for an update, as with this current committee, a multidisciplinary team will be formed for the specific purpose of updating this CPG.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORWARD BY THE DIRECTOR GENERAL OF HEALTH</td>
<td>4</td>
</tr>
<tr>
<td>INFECTIVE ENDOCARDITIS CLINICAL PRACTICE GUIDELINES</td>
<td>5</td>
</tr>
<tr>
<td>EXPERT PANEL</td>
<td>7</td>
</tr>
<tr>
<td>EXTERNAL REVIEWERS</td>
<td>10</td>
</tr>
<tr>
<td>GRADES OF RECOMMENDATION AND LEVELS OF EVIDENCE</td>
<td>11</td>
</tr>
<tr>
<td>RATIONALE AND PROCESS OF THE INFECTIVE ENDOCARDITIS GUIDELINES</td>
<td>15</td>
</tr>
<tr>
<td>DEVELOPMENT</td>
<td></td>
</tr>
<tr>
<td>SUMMARY OF THE CLINICAL PRACTICE GUIDELINES FOR</td>
<td></td>
</tr>
<tr>
<td>THE PREVENTION, DIAGNOSIS AND MANAGEMENT OF INFECTIVE ENDOCARDITIS</td>
<td></td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>24</td>
</tr>
<tr>
<td>2.0 EPIDEMIOLOGY</td>
<td>27</td>
</tr>
<tr>
<td>3.0 DIAGNOSIS</td>
<td>29</td>
</tr>
<tr>
<td>3.1 Clinical evaluation of suspected infective endocarditis</td>
<td>30</td>
</tr>
<tr>
<td>3.1.1 Pre-existing risk factors</td>
<td>30</td>
</tr>
<tr>
<td>3.1.2 Clinical manifestations</td>
<td>31</td>
</tr>
<tr>
<td>3.2 Investigations</td>
<td>34</td>
</tr>
<tr>
<td>3.2.1 Laboratory investigations</td>
<td>34</td>
</tr>
<tr>
<td>3.2.2 Microbiological diagnosis</td>
<td>34</td>
</tr>
<tr>
<td>3.2.3 Histopathological diagnosis</td>
<td>40</td>
</tr>
<tr>
<td>3.3 Imaging</td>
<td>43</td>
</tr>
<tr>
<td>3.3.1 Echocardiography</td>
<td>43</td>
</tr>
<tr>
<td>3.3.2 Other imaging modalities</td>
<td>50</td>
</tr>
<tr>
<td>3.4 Diagnostic criteria</td>
<td>53</td>
</tr>
<tr>
<td>3.4.1 The modified Duke criteria and its limitations</td>
<td>53</td>
</tr>
<tr>
<td>4.0 MANAGEMENT</td>
<td>57</td>
</tr>
<tr>
<td>4.1 Clinical management</td>
<td>57</td>
</tr>
<tr>
<td>4.1.1 Monitoring</td>
<td>58</td>
</tr>
<tr>
<td>4.1.2 Complications</td>
<td>60</td>
</tr>
<tr>
<td>4.1.3 Issues with anticoagulation</td>
<td>70</td>
</tr>
<tr>
<td>4.1.4 Referral for specialist care</td>
<td>74</td>
</tr>
<tr>
<td>4.1.5 Pre-discharge management</td>
<td>77</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>7.1.3 Lesion specific incidence of infective endocarditis in congenital heart disease</td>
<td>118</td>
</tr>
<tr>
<td>7.1.4 Management of infective endocarditis in congenital heart disease</td>
<td>120</td>
</tr>
<tr>
<td>7.2 Infective endocarditis in paediatric patients</td>
<td>121</td>
</tr>
<tr>
<td>7.2.1 Infective endocarditis in neonates with normal heart structures</td>
<td>121</td>
</tr>
<tr>
<td>7.2.2 Clinical presentation</td>
<td>122</td>
</tr>
<tr>
<td>7.2.3 Management of paediatric infective endocarditis</td>
<td>123</td>
</tr>
<tr>
<td>7.3 Infective endocarditis in transcatheter valve implantations</td>
<td>124</td>
</tr>
<tr>
<td>7.3.1 Transcatheter pulmonary valve implantation</td>
<td>124</td>
</tr>
<tr>
<td>7.3.2 Transcatheter aortic valve implantation/transcatheter aortic valve replacement</td>
<td>126</td>
</tr>
<tr>
<td>7.4 Infective endocarditis in cardiac implantable electronic devices</td>
<td>127</td>
</tr>
<tr>
<td>7.5 Infective endocarditis in pregnancy</td>
<td>129</td>
</tr>
<tr>
<td>8.0 Antimicrobial prophylaxis for infective endocarditis</td>
<td>130</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>130</td>
</tr>
<tr>
<td>8.2 Cardiac conditions associated with the highest risk of infective endocarditis</td>
<td>130</td>
</tr>
<tr>
<td>8.3 Antimicrobial prophylaxis for specific procedures</td>
<td>131</td>
</tr>
<tr>
<td>8.3.1 Dental procedures</td>
<td>131</td>
</tr>
<tr>
<td>8.3.2 Non-dental procedures</td>
<td>132</td>
</tr>
<tr>
<td>8.4 Antimicrobial regimes for infective endocarditis prophylaxis</td>
<td>133</td>
</tr>
<tr>
<td>8.5 Preventive measures</td>
<td>135</td>
</tr>
<tr>
<td>8.5.1 Periodontal and dental disease</td>
<td>135</td>
</tr>
<tr>
<td>8.5.2 Cardiac implantable devices or prosthesis implantation</td>
<td>135</td>
</tr>
<tr>
<td>9.0 Implementing the guidelines and resource implications</td>
<td>136</td>
</tr>
<tr>
<td>10.0 Appendices</td>
<td>137</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>170</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>179</td>
</tr>
<tr>
<td>DISCLOSURE STATEMENT</td>
<td>179</td>
</tr>
<tr>
<td>SOURCES OF FUNDING</td>
<td>179</td>
</tr>
</tbody>
</table>
Infective endocarditis (IE) is an uncommon and potentially lethal infection affecting patients at risk. Despite advances in medicine, IE still causes significant morbidity and mortality. This is due to the changing epidemiology of the disease, the wide spectrum of presentation extending from the neonate to the elderly, diagnostic difficulties, delayed surgical interventions and embolic complications. The advances in cardiothoracic surgery and cardiology over the years with the increasing use of prosthetic material, valves and intracardiac devices have also contributed to the challenges in managing IE in these patients.

Some important evolution in management strategies would be the development of an Endocarditis Team with multidisciplinary expertise in cardiology, cardiothoracic surgery, infectious disease and other subspecialties as indicated. This is encouraged to enable early diagnosis, optimise treatment and prevent complications in these patients. It also allows for smoother and more efficient referrals to specialised centres.

Previously, surgical intervention was delayed because of the high-risk and mortality but, recently published data have also shown that early surgical interventions in these patients decrease embolic complications and improve outcomes.

There have also been changes with regards to antimicrobial prophylaxis. The evidence currently shows that routine antimicrobial prophylaxis prior to dental procedures is not indicated for all cardiac patients and should be limited to high-risk cardiac patients only. Maintaining a good oral and skin hygiene routine is highly recommended in the prevention of IE.

With these recent developments in the prevention, diagnosis and management of IE, it is timely that we develop local clinical practice guidelines to update all respective healthcare providers with regards to the new management strategies.

I congratulate the committee for the effort and hope that these guidelines would serve to decrease the incidence of IE and its associated morbidity and mortality.

Datuk Dr. Noor Hisham Abdullah
Director General of Health Malaysia
Dr. Geetha Kandavello

Chairperson
Deputy Head of Department
Senior Consultant Paediatric Cardiologist and Clinical Director
Adult Congenital Heart Disease Services
Paediatric and Congenital Heart Centre
National Heart Institute (IJN), Kuala Lumpur

Assoc. Prof. Dr. Ariza Adnan
Consultant Pathologist (Medical Microbiology)
Faculty of Medicine
Universiti Teknologi MARA, Selangor

Mr. John Chan Kok Meng
Consultant Cardiothoracic Surgeon
Gleneagles Hospital, Kuala Lumpur

Dr. Kalaiarasu M.Peariasamy
Head of Department and Senior Consultant
Paediatric Dentistry
Hospital Sungai Buloh, Selangor

Ms. Kamaleswary Arumugam
Principal Pharmacist
National Heart Institute (IJN), Kuala Lumpur

Dr. Leong Chee Loon
Consultant Physician and Infectious Disease Specialist
Hospital Kuala Lumpur, Kuala Lumpur
Dr. Mohd Rahal Yusoff
Specialist in Internal Medicine
Hospital Kuala Lumpur, Kuala Lumpur

Dr. Norazah Zahari
Consultant Paediatrician and Paediatric Cardiologist
University Malaya Medical Centre, Kuala Lumpur

Dr. Shamruz Khan bin Akerem Khan
Consultant Cardiologist
Subang Jaya Medical Centre, Selangor

Mr. Sivakumar Sivalingam
Consultant Cardiothoracic Surgeon and Clinical Director
Congenital Heart Surgery
National Heart Institute (IJN), Kuala Lumpur

Dr. Suresh Kumar A/L Chidambaram
Consultant Infectious Disease Specialist
Hospital Sungai Buloh, Selangor

Dr. Syahidah binti Syed Tamin
Consultant Cardiologist and Adult Valvular Heart Disease Specialist
National Heart Institute (IJN), Kuala Lumpur

Dato’ Dr. Yap Lok Bin
Consultant Cardiologist
National Heart Institute (IJN), Kuala Lumpur
EXTERNAL REVIEWERS

Malaysian expert reviewers

<table>
<thead>
<tr>
<th>Speciality</th>
<th>Name</th>
<th>Designation/institution of practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentistry</td>
<td>Datin Dr. Salmiah binti Bustanuddin</td>
<td>Deputy Director of the State Health (Oral Health)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral Health Division</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selangor State Health Department</td>
</tr>
<tr>
<td></td>
<td>Dr. Yaw Siew Lian</td>
<td>Principal Deputy Director</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral Health Research & Epidemiology Section</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral Health Division</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ministry of Health, Malaysia</td>
</tr>
<tr>
<td>Family Medicine</td>
<td>Dr. Mimi binti Omar</td>
<td>Family Medicine Specialist</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Klinik Kesihatan Jinjang</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kuala Lumpur</td>
</tr>
<tr>
<td>Infectious Disease</td>
<td>Dr. Chua Hock Hin</td>
<td>Infectious Disease Consultant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital Umum Sarawak</td>
</tr>
<tr>
<td>Paediatric Infectious Disease</td>
<td>Dr. Jeyaseelan A/L P. Nachiappan</td>
<td>Consultant Paediatrician and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Infectious Disease Specialist</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital Raja Permaisuri Bainun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ipoh, Perak</td>
</tr>
<tr>
<td></td>
<td>Dr. Tan Kah Kee</td>
<td>National Head of Paediatric Infectious Disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ministry of Health;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consultant Paediatrician and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Infectious Disease Specialist</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital Tuanku Ja’afar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seremban, Negeri Sembilan</td>
</tr>
<tr>
<td>Speciality</td>
<td>Name</td>
<td>Designation/institution of practice</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Medical Microbiology</td>
<td>Datin Dr. Salbiah Hj Nawi</td>
<td>National Head of Medical Microbiology Ministry of Health;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consultant Pathologist (Medical Microbiology)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital Kuala Lumpur</td>
</tr>
<tr>
<td>Cardiology</td>
<td>Dr. Lee Chuey Yan</td>
<td>Head of Department and Consultant Cardiologist</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital Sultanah Aminah</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Johor Bahru, Johor</td>
</tr>
<tr>
<td>Paediatric Cardiology</td>
<td>Dr. Martin Wong Ngie Liong</td>
<td>Consultant Paediatric Cardiologist</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sarawak Heart Centre</td>
</tr>
<tr>
<td></td>
<td>Assoc. Prof. Dr. Abdul Rahim Wong</td>
<td>Consultant Paediatric Cardiologist</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital Raja Perempuan Zainab II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kota Bahru, Kelantan</td>
</tr>
<tr>
<td>General Medicine</td>
<td>Dr. Fauzi Azizan bin Abdul Aziz</td>
<td>Head of Medical Department</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital Tuanku Ampuan Najihah</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kuala Pilah, Negeri Sembilan</td>
</tr>
<tr>
<td></td>
<td>Dr. Chin Pek Woon</td>
<td>Consultant Physician and Head of Medical Department</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital Enche’ Besar Hajjah Khalsom</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kluang, Johor</td>
</tr>
<tr>
<td>Cardiothoracic Surgery</td>
<td>Dato Dr. Mohd Hamzah Kamarulzaman</td>
<td>National Head of Cardiothoracic Surgery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ministry of Health;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consultant Cardiothoracic Surgeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital Serdang</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selangor</td>
</tr>
<tr>
<td></td>
<td>Mr. Basheer Ahamed Abdul Kareem</td>
<td>Head of Department and Consultant Cardiologist</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cardiothoracic Surgeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Penang General Hospital</td>
</tr>
<tr>
<td>Neurology</td>
<td>Datuk Dr. Raihanah binti Abd Khalid</td>
<td>Consultant Neurologist</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assunta Hospital</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Petaling Jaya, Selangor</td>
</tr>
<tr>
<td>Speciality</td>
<td>Name</td>
<td>Designation/institution of practice</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Neurology</td>
<td>Dr. Shanthi Viswanathan</td>
<td>Consultant Neurologist Department of Neurology Hospital Kuala Lumpur</td>
</tr>
<tr>
<td>Neurosurgery</td>
<td>Dr. Nor Faizal bin Ahmad Bahuri</td>
<td>Consultant Neurosurgeon Department of Neurosurgery University Malaya Medical Centre</td>
</tr>
<tr>
<td>Interventional Radiology</td>
<td>Assoc. Prof. Dr. Khairul Azmi bin Abdul Kadir</td>
<td>Head of Department of Radiology and Consultant Neurointerventional Radiologist University Malaya Medical Centre Kuala Lumpur</td>
</tr>
<tr>
<td>Pharmacy</td>
<td>Tan Chee Chin</td>
<td>Pegawai Farmasi U52 Hospital Sultanah Aminah Johor Bahru, Johor</td>
</tr>
</tbody>
</table>

International expert reviewers

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. Ralph Corey, MD</td>
<td>Professor of Medicine
Gary Hock Professor in Global Health, in the School of Medicine; Research Professor of Global Health; Professor of Pathology; Member in the Duke Clinical Research Institute; Vice-Chair for Education and Global Health in the Department of Medicine; Infectious Disease Consultant Duke University Medical Centre Durham, North Carolina, USA</td>
</tr>
<tr>
<td>Nandan S. Anavekar, M.B., B.Ch.</td>
<td>Associate Professor of Medicine Cardiovascular Diseases
Mayo Clinic
Rochester, Minnesota, USA</td>
</tr>
<tr>
<td>Professor J. Pepper, OBE</td>
<td>Professor of Cardiothoracic Surgery
Royal Brompton Hospital
London, UK</td>
</tr>
</tbody>
</table>
Grades of Recommendation and Levels of Evidence

Grades of Recommendation

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Conditions for which there is evidence and/or general agreement that a given procedure/therapy is beneficial, useful and/or effective.</td>
</tr>
<tr>
<td>II</td>
<td>Conditions for which there is conflicting evidence and/or divergence of opinion about the usefulness/efficacy of a procedure/therapy.</td>
</tr>
<tr>
<td>IIa</td>
<td>Weight of evidence/opinion is in favour of its usefulness/efficacy.</td>
</tr>
<tr>
<td>IIb</td>
<td>Usefulness/efficacy is less well established by evidence/opinion.</td>
</tr>
<tr>
<td>III</td>
<td>Conditions for which there is evidence and/or general agreement that a procedure/therapy is not useful/effective and in some cases may be harmful.</td>
</tr>
</tbody>
</table>

Level of Evidence

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Data derived from multiple randomised clinical trials or meta-analyses.</td>
</tr>
<tr>
<td>B</td>
<td>Data derived from a single randomised clinical trial or large non-randomised studies.</td>
</tr>
<tr>
<td>C</td>
<td>Only consensus of opinions of experts, case studies or standard of care.</td>
</tr>
</tbody>
</table>

Adapted from the American College of Cardiology Foundation/American Heart Association and the European Society of Cardiology. 2015.

Note: The grades of recommendations denoted throughout these guidelines reflect the strength of the evidence that each recommendation is based upon. It may not refer to the clinical significance of the recommendation. All patients with infective endocarditis should be managed together with the best clinical judgment of the healthcare provider.
RATIONALE AND PROCESS OF THE INFECTIVE ENDOCARDITIS GUIDELINES DEVELOPMENT

Rationale

Infective endocarditis (IE) causes substantial morbidity and mortality despite advances in antimicrobial therapy, methods of diagnosis and treatment of complications.

This first edition clinical practice guidelines (CPG) has been developed to guide the prevention, diagnosis and management of IE for use by Malaysian healthcare professionals. The writing committee consisting of experts in infectious disease, cardiology, cardiothoracic surgery, microbiology, pharmacy and dentistry from the Ministry of Health, the National Heart Institute (IJN), the Ministry of Education hospitals and private healthcare has developed these guidelines using as references, best practice recommendations from internationally recognised bodies and latest available evidence-based articles. The CPG was developed based on the local landscape of IE and has been reviewed by a multidisciplinary team of experts involved in the comprehensive management of this disease.

Objectives

To provide evidence-based guidance for the prevention, diagnosis and management of all patients with or at risk of IE with the aim to reduce related morbidity and mortality by:

- Facilitating the early diagnosis of IE, so appropriate treatment can be instituted early.
- Providing guidance on the principles of appropriate antimicrobial therapy based on the type of IE and the causative microorganisms.
- Determining the indications and optimal timing for cardiothoracic surgery in IE.
- Determining the indications for antimicrobial prophylaxis in the prevention of IE.
An extensive search of the current medical literature on the prevention, diagnosis and management of IE was done based on the clinical questions developed by the expert panel. The electronic databases used were the Cochrane database of systemic reviews (CDSR), Medline/PubMed via Ovid, and Sumsearch2 with the following search criteria; to include all original articles (clinical trials, systemic reviews, meta-analysis and observational studies) published in English and to exclude publications in languages other than English, and animal studies. When local data were required, local publications in unindexed journals and unpublished data were used. Literature search was conducted till the most current available published data. The references ranged from years 1966 to the latest National Institute for Health and Care Excellence (NICE) update for the prophylaxis against IE in 2016.

The main search strategy was built around the following MeSH and free text terms used either singly or in combination:

\(^{18}\text{F-FDG PET/CT, acute, adult, adverse effects, antiplatelet therapy, antibiotics, anticoagulant, anticoagulation, anti-fungal, antimicrobial, bacteraemia, blood culture, blood culture negative, blood culture negative infective endocarditis, blood culture positive, blood culture positive infective endocarditis, body piercing, Candida, cardiac implantable electronic device, challenges, classification, clinical, clinical manifestation, culture negative, Coagulase-negative staphylococcus, collection, complications, congenital heart disease, control, definition, dental, dental health services, diagnosis, diagnostic criteria, drug monitoring, echocardiogram, echocardiography, empirical, endocarditis, Enterobacteriaceae, Enterococcus, epidemiology, follow-up, fungal, guidelines, HACEK, haemorrhagic stroke, health, healthcare, healthcare associated, heart failure, histopathology, incubation, indication, infective endocarditis, interpretation, intervention, intravenous drug user, investigation, ischaemic stroke, laboratory investigation, limitations, magnetic resonance imaging, management, microbiological, microbiology, modified Duke criteria, monitor, morbidity, mortality, multislice computed tomography, mycotic aneurysm, native valve, neonates, neurological, non-HACEK, nuclear imaging, nutritionally variant streptococci, out patient, out patient parenteral antibiotic therapy, outcomes, paediatric, parenteral therapy, perivalvular extension, persistent infection, positron emission tomography, post-discharge, pre-discharge, pre-procedural, predisposing risk, presentation, prevention, prognosis, prophylaxis, prosthetic valve, pseudoaneurysms, pulmonary valve implantation, referral, renal impairment, right-sided, sampling, S. aureus, S. viridans, services, side effects, signs and symptoms, single-photon emission computed tomography, single-photon

From the searched literature, the relevant articles were picked based on the Critical Appraisal Skills Program (CASP). In addition, the reference lists of these relevant articles were searched to identify further studies. International guidelines on the prevention, diagnosis and management of IE e.g. from American Heart Association (AHA), European Society of Cardiology (ESC), NICE, the British Society for Antimicrobial Chemotherapy, and Australian Infective Endocarditis Prophylaxis Expert Group, and the Canadian revisions to the latest AHA guidelines were also used as reference points in the development of this CPG. These international guidelines were reviewed and assessed by the committee using the AGREE II tool prior to inclusion as reference.

The members of the expert panel appraised all the literature retrieved in a systematic manner. The expert panel and review committee agreed on all statements and recommendations formulated in the CPG. Where the evidence was insufficient the recommendations were derived by consensus of both groups. Disagreements were resolved by voting and the consensus decision of the majority was used.

These guidelines were presented to the Technical Advisory Committee for Clinical Practice Guidelines, the Health Technology Assessment and Clinical Practice Guidelines Council, Ministry of Health Malaysia for review and approval.
Clinical questions addressed

- What are the diagnostic criteria and its limitations in diagnosing IE?
- What are the appropriate microbiological investigations and procedures to diagnose IE?
- What are the appropriate imaging modalities in diagnosing IE?
- What are effective and safe antimicrobial therapies for treatment of IE?
- How to diagnose and appropriately manage complications of IE?
- What are the indications and timing for surgery in valvular IE?
- What are the indications and timing for surgery in congenital heart disease (CHD) IE?
- What are the risk factors for IE in CHD?
- Who are at risk of developing IE in the paediatric population?
- How is IE diagnosed and appropriately managed in these conditions:
 - Patients with cardiac implantable electronic devices (CIED)?
 - Patients with transcatheter pulmonary valve implantation (TPVI), transcatheter aortic valve implantation (TAVI) and transcatheter aortic valve replacement (TAVR)?
- Which high-risk cardiac conditions need antimicrobial prophylaxis?
- Which dental and other interventional procedures are high-risk for developing IE?
- If indicated, what is the effective and safe antimicrobial prophylaxis before an interventional procedure?
- What effective and safe preventive measures should be practiced by patients at risk of IE to reduce bacteraemia?

Target group

This CPG is applicable to all healthcare professionals and relevant stakeholders involved in the prevention and care of patients with high-risk of IE or, patients with suspected or proven IE.

Target population

These guidelines are targeted at all age groups in the population at risk of IE and/or those who present in any form and severity of IE.

Healthcare settings

These guidelines were developed for the prevention, diagnosis and management of IE in the primary, secondary and tertiary healthcare settings.
SUMMARY OF THE CLINICAL PRACTICE GUIDELINES FOR THE PREVENTION, DIAGNOSIS AND MANAGEMENT OF INFECTIVE ENDOCARDITIS

General information

- Infective endocarditis (IE), even though uncommon, causes significant morbidity and mortality in both children and adults.
- The trend of IE has evolved to affect older patients with co-morbidities and no known structural heart disease.
- *Streptococcus* species is a common causative microorganism in young patients with pre-existing structural heart disease whilst *Staphylococcus aureus* (*S. aureus*) is more common in the older patients and those with healthcare associated IE.

Diagnosis

- Early and accurate diagnosis of IE is crucial to institute appropriate treatment and prevent complications. A high level of clinical suspicion of IE is warranted especially in those with pre-existing risk factors (refer Section 3.1.1).
- Due to the varied spectrum of the disease, a combination of clinical assessment, microbiological testing and imaging are required to make the diagnosis.
- **Blood culture** is a key investigation in the diagnosis of IE. Proper technique of blood culture collection is crucial, as this will reduce the rate of contamination and yield a true positive result (refer Appendix 3).
- Blood cultures should be drawn for patients with fever of unexplained origin and a heart murmur, a history of heart disease or previous endocarditis.
- Three sets of blood cultures should be obtained first before administering antimicrobials when a patient has fever and predisposing risk factors for IE.
- If blood cultures remain negative after 5 days of incubation and there is no history of prior antimicrobial use, consider blood culture negative infective endocarditis (BCNIE), which can be caused by fungi or fastidious microorganisms, and perform the appropriate microbiological tests (refer Table 3.2 and Figure 3a).
• **Histopathological examination (HPE)** of cardiac tissue/vegetations obtained during surgery is of diagnostic value and is recommended.

• A transthoracic **echocardiogram (TTE)** should be obtained without delay if the diagnosis of IE is suspected.

• Echocardiogram findings should be interpreted in the context of the clinical scenario and repeated if the clinical suspicion of IE persists despite a negative initial echocardiogram.

• Transoesophageal echocardiogram (TOE/TEE) should be done if initial TTE examination is negative, in patients with strong clinical suspicion of IE, in those with prosthetic valves/cardiac material and in those with high-risk features (refer Figure 3b).

• Echocardiography plays a crucial role in the diagnosis of IE, monitoring for complications and progression of valvular dysfunction, assessing the outcome of surgical repair and in the follow-up after completion of antimicrobials (refer to Table: Role of echocardiography in the diagnosis and management of IE, below).

• In patients with *Staphylococcus aureus* bacteraemia from an unknown aetiology or persistent bacteraemia despite antimicrobials, echocardiography should be considered.

• Some newer imaging modalities (multislice computed tomography; MSCT, magnetic resonance imaging; MRI and nuclear imaging) can assist in diagnosing IE and its complications.

• The **modified Duke criteria** is used to diagnose IE but has limited diagnostic accuracy in the early phase of the disease and in those patients with prosthetic valve or cardiac implantable electronic device (CIED) endocarditis (refer Figure 3c).

Management

• The management of IE is aimed at eradicating the infection, and preventing and treating both intra and extracardiac complications.

• Patients with complicated IE should preferably be referred to a **specialist centre**. Specialist centres are those with cardiothoracic, cardiac imaging and specialised cardiology services (refer Section 4.1.4).

• A **multidisciplinary team** approach involving infectious disease (ID) physicians, cardiologists, cardiothoracic surgeons and other relevant subspecialty experts is essential in the management of IE (refer Table 4.2).

• In all patients with suspected endocarditis, elicit risk factors for fastidious/intracellular pathogens (refer Table 3.2).

• The mainstay of treatment is appropriate and adequate **antimicrobial therapy** (refer Section 4.2). The minimum inhibitory concentration (MIC) should be done to ensure optimal antimicrobial therapy.
> For **penicillin susceptible** (MIC ≤ 0.125 µg/ml) **Viridans streptococci**:
 » Monotherapy with benzyl penicillin, ampicillin or ceftriaxone is adequate. [IIa/B]
 » Duration of therapy is for 4 weeks for native valve endocarditis (NVE) and 6 weeks for prosthetic valve endocarditis (PVE). [IIa/C]

> For **penicillin relatively resistant** (MIC > 0.125 to 2 µg/ml) **Viridans streptococci**:
 » Gentamicin has to be added to the regime. [IIa/B]
 » Duration of gentamicin is for 2 weeks for NVE and 6 weeks for PVE. [IIa/C]

> **Granulicatella and Abiotrophia** (formerly nutritionally variant streptococci; NVS) are fastidious and slow growing making it technically difficult to determine antimicrobial susceptibility.
 » Combination treatment of penicillin, ampicillin or ceftriaxone with gentamicin for at least the first 2 weeks, followed by continuation of chosen antimicrobial without gentamicin for 6 weeks is recommended. [II/B]

> **Staphylococcus endocarditis**:
 » Vancomycin is inferior to cloxacillin for methicillin-sensitive Staphylococcal aureus (MSSA) endocarditis.
 » Addition of gentamicin for native valve *staphylococcus* endocarditis is not recommended. [III/B]
 » Addition of gentamicin and rifampicin is recommended for prosthetic valve staphylococcal endocarditis. [I/C]
 » In order to prevent resistance, rifampicin should be started after 3-5 days of effective therapy or after blood cultures are negative.

> **HACEK microorganisms**:
 » Ceftriaxone monotherapy is recommended for endocarditis due to *Haemophilus*, *Aggregatibacter actinomycetemcomitans*, *Cardiobacterium*, Eikinella and *Kingella* (HACEK) microorganisms. [IIa/B]
 » Alternative drugs such as ampicillin-sulbactam or ciprofloxacin may be used provided the isolate is susceptible. [IIb/C]

> **Candida endocarditis**:
 » Valve surgery combined with anti-fungal therapy is required for adequate treatment of *Candida* endocarditis. [I/B]
 » Long-term suppressive therapy will be required if valve replacement is not performed.

> **Non-HACEK microorganisms**:
 » Combination therapy with β-lactam and aminoglycosides, or fluroquinolones is recommended for 6 weeks. [IIa/C]
• The **empirical antimicrobial treatment** in valvular endocarditis should cover for streptococci, enterococci and HACEK microorganisms if it is community acquired NVE or late PVE. Consider additional cover for MSSA in patients with acute presentation or with additional risk factors such as intravenous drug use (IVDU) and patients with prosthesis. If it is healthcare associated NVE or early PVE, methicillin-resistant *Staphylococcus aureus* (MRSA), enterococci and non-HACEK Gram-negative microorganisms should be covered (refer Section 4.2 and Figure 4a).

• Patients with IE should be closely monitored for response to treatment and for complications (refer Section 4.1).

• Some **common complications** of IE are (refer Section 4.1.2):

 > Heart failure:
 > » Commonly associated with valve dysfunction.
 > » Surgery is indicated for those with acute decompensated heart failure due to valvular dysfunction.

 > Persistent infection and perivalvular extensions:
 > » Monitor for conduction abnormalities e.g. atrioventricular (AV) block.
 > » TEE should be performed to look for perivalvular extensions.

 > Systemic embolism:
 > » Usually occurs in left-sided IE and within the first 2 weeks of therapy.
 > » Common sites are the brain and spleen.
 > » Risk factors for embolism are associated with vegetation size (> 10 mm), mobility, location (anterior mitral valve leaflet) as well as the causative microorganism (*S. aureus*).

 > Neurological complications:
 > » Occurs early in the course of IE (first 2 weeks).
 > » Common complications are ischaemic or haemorrhagic stroke, and mycotic aneurysms.
 > » Management should be individualised and care plan decided by a multidisciplinary team that also includes neurologists and neurosurgeons.
 > » It is advisable to withhold anticoagulation in mechanical prosthetic valve endocarditis (MPVE) patients who have haemorrhagic neurological complications for at least 2 weeks with close monitoring of the valves and patient’s clinical condition.
 > » The duration to withhold anticoagulation is dependent on the severity of the neurological complication and the patient’s clinical condition (refer Table 4.1).
• **Anticoagulation** should be managed based on the individual patient’s clinical status, presence of neurological complications and, on the presence or absence of indications for cardiac surgery (refer Section 4.1.3).

• Early **surgical intervention** is recommended especially in view of improving outcomes, preventing complications and increasing the success rate of valve reconstruction (refer Section 5.1).

• The main aim during surgery is to completely remove all infected tissue and to repair rather than replace the valve where possible.

• The timing for cardiac surgery is dependent on the patient’s clinical condition, type of microorganism, size of vegetation and the presence of complications.

• The severity of clinical manifestations should not limit the decision for surgical intervention when indicated (refer Sections 5.1 & 5.2, and Table: Timing and indications for surgical intervention, below).

Timing and indications for surgical intervention

<table>
<thead>
<tr>
<th>Timing of surgery</th>
<th>Clinical condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency (within 24 hours)</td>
<td>Cardiogenic shock from severe valve dysfunction</td>
</tr>
<tr>
<td>Urgent (within 3-4 days)</td>
<td>Pulmonary oedema but not in cardiogenic shock</td>
</tr>
<tr>
<td></td>
<td>Very large vegetations (> 10 mm)</td>
</tr>
<tr>
<td></td>
<td>Paravalvular abscess or heart block</td>
</tr>
<tr>
<td>Early (within 1-2 weeks)</td>
<td>Fungal, S. aureus or other highly resistant microorganisms</td>
</tr>
<tr>
<td></td>
<td>Persistent infection > 5-7 days after initiating antimicrobials</td>
</tr>
<tr>
<td></td>
<td>Persistent or enlarging vegetations despite antimicrobials</td>
</tr>
<tr>
<td></td>
<td>Recurrent emboli despite adequate antimicrobial therapy</td>
</tr>
<tr>
<td>Semi-elective (after 2 weeks of antimicrobials)</td>
<td>PVE and relapsing infection</td>
</tr>
<tr>
<td>Elective (after 6 weeks of antimicrobials)</td>
<td>Well-tolerated chronic severe valvular regurgitation with controlled infection</td>
</tr>
</tbody>
</table>
IE in specific conditions

There are important considerations for IE in congenital heart disease (CHD), CIED and transcatheter valve implants:

- These conditions merit a high index of suspicion of IE (refer Sections 7.3 & 7.4).
- In these patients, once a diagnosis of IE has been established or if there is strong clinical suspicion of IE, the patient should be sent to a specialist centre (refer Section 4.1.4).
- The epidemiology of paediatric IE has evolved to reflect those with the advancement of interventions for CHD. It now broadly reflects the following groups:
 - Patients with prolonged use of central venous catheters in:
 - Corrected CHD during the post-operative period.
 - Neonates with normal heart structures who require intravenous treatment for other issues (refer Sections 7.1 & 7.2).
 - Adult and paediatric patients with:
 - Complex cyanotic CHD.
 - Unrepaired CHD.
 - Repaired CHD with prosthetic material.
 - Cardiac surgery or transcatheter device interventions done within the last 6 months (refer Section 7.2).

Prevention of IE

- Antimicrobial prophylaxis is not routinely recommended for cardiac patients undergoing invasive dental or other medical procedures and should be limited only for cardiac patients associated with the highest risk of adverse outcomes from IE (refer Chapter 8.0).
- Those with high predisposing risk for developing IE should be advised to maintain good oral and skin hygiene.
Summary of clinical management of IE (refer Section 4.1)

Diagnosis

- **History**: Physical examination, Basic investigations (refer Chapter 3.0)
- **Microbiology**: (refer Figure 3a)
- **ECHO**: (refer Figure 3b)

Definite IE or Possible IE with high clinical suspicion (refer Section 3.4)

- Commence empirical antimicrobial treatment (refer Figure 4a)
- Refine antimicrobial therapy guided by culture results and MIC levels as soon as possible
- Treat for appropriate duration (refer Section 4.2)
- Review indications for surgery (refer Chapter 5.0)
- Refer to SC for surgery (refer Table 4.2)
- Send tissue samples for HPE and microbiology

Treatment success

- Pre-discharge management (refer Section 4.1.6):
 - Document pre-discharge clinical status and echocardiographic findings
 - Education on preventive measures and features of recurrence of IE

Treatment failure

- Consult SC
- Assess for complications
- Repeat TEE
- More advanced imaging and microbiological investigations

1. Vital signs
2. Regular examination for complications (refer Section 4.1.4)
3. Daily ECG (refer Section 4.1.1)
4. Repeat ECHO as needed (refer Figure 3b)
5. Review anticoagulant use (refer Section 4.1.2)

Not Indicated

Indicated

Follow-up management (refer Chapter 6.0):

- Monitor for relapse and reinfections
- Review indications for elective cardiac surgery
- Education on preventive measures

ECG: Electrocardiogram
ECHO: Echocardiogram
HPE: Histopathological examination
MIC: Minimum inhibitory concentration
SC: Specialist centre
TEE: Transoesophageal echocardiogram
Table: Role of echocardiography in the diagnosis and management of IE

<table>
<thead>
<tr>
<th>Timing</th>
<th>Echocardiography assessment</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis</td>
<td>Presence and size of vegetation</td>
<td>If > 10 mm in diameter, there is excess risk of embolisation and surgery is indicated to prevent embolisation</td>
</tr>
<tr>
<td></td>
<td>Valve function: mechanism and quantification of regurgitation or obstruction to flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valve damage: perforations or new dehiscence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paravalvular extensions: fistula, abscess and pseudoaneurysms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ventricular function and haemodynamics</td>
<td></td>
</tr>
<tr>
<td>Monitoring during active IE</td>
<td>Valve function: worsening dysfunction or acute regurgitation</td>
<td>If present with acute/worsening heart failure, surgery is indicated</td>
</tr>
<tr>
<td></td>
<td>Monitoring of ventricular function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>New development of paravalvular extension with or without new lesions</td>
<td>In the context of uncontrolled infection</td>
</tr>
<tr>
<td></td>
<td>Changes in vegetation size and mobility</td>
<td>Risk of embolisation if > 10 mm in diameter</td>
</tr>
<tr>
<td></td>
<td>Presence of pericarditis with or without myocarditis</td>
<td>Ideally this should be evaluated with cardiac magnetic resonance imaging (MRI)</td>
</tr>
<tr>
<td>Timing</td>
<td>Echocardiography assessment</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| Perioperative | Intraoperative TEE to assess:
• Severity of valve dysfunction and pathology, and ventricular function
• Outcome of the surgical intervention | |
| Pre-discharge | To establish a new baseline (most often a TTE is adequate) | Document baseline haemodynamic parameters and severity of any valvular lesions |
| On follow-up | Close monitoring especially in the first year post-IE to assess the severity and progression of residual valvular dysfunction
For stable valvular lesions, to decide on timing of surgical intervention | If worsening, to consider ongoing infection or need for early surgery
Follow established guidelines for management of valvular heart disease¹ |
1.0 INTRODUCTION

Infective endocarditis (IE) is defined as an infection of the endocardial surface of the heart (heart valves and mural endocardium) by microorganisms (mainly bacteria).

IE has evolved over the years as the prevalence of rheumatic heart disease declined. Advances in the treatment of congenital heart disease (CHD) and structural heart disease with the introduction of conduits, prosthetic materials and intracardiac devices has led to many patients surviving well into adulthood, hence making them more susceptible to infection in view of the presence of these foreign materials. Incidence of IE in patients with adult CHD is 3 times higher than that in the paediatric population. Increase in the ageing population has also led to older patients with multiple co-morbidities and no known structural heart disease being at risk of this disease too.

The spectrum of microorganisms involved with IE have also changed of late, with the increase in the presence of virulent and drug-resistant microorganisms such as Staphylococci and fungi that have contributed to the difficulties in the management of IE.

IE still remains a therapeutic challenge with a high morbidity and mortality despite advances in medicine and surgery. The changing trends in the epidemiology, the varied clinical manifestations and complications, and diagnostic difficulties with the uncertainties of appropriate timing for surgical interventions, have contributed to the poor prognosis of this disease.

The aim of these clinical practice guidelines (CPG) is to enable medical personnel at all levels of care to diagnose IE early and effectively manage these patients. It also stresses the importance of preventing IE in those with predisposing risk factors.
In keeping to this aim, this CPG attempts to highlight some of the more crucial areas in the diagnosis and management of IE:

- **To enable early and accurate diagnosis:**
 - The chapter on diagnosis (refer Chapter 3.0) incorporates important information and recommendations pertaining to clinical, microbiological and imaging assessments to guide physicians in making an early diagnosis of IE.
 - Included in this chapter is a comprehensive section (refer Section 3.2.2) on microbiological investigations focusing on increasing the yield in blood culture negative infective endocarditis (BCNIE).
 - The role of echocardiography especially transoesophageal echocardiogram (TOE/TEE) and newer imaging modalities in the diagnosis of IE and its complications are detailed in Section 3.3.

- **To improve and optimise the treatment of IE:**
 - As the clinical manifestations of IE can be varied, a good outcome depends on the combined management of a multidisciplinary team, which should include specialists such as cardiologists, cardiothoracic surgeons, infectious disease (ID) physicians and other relevant medical subspecialties.
 - Early referral to a Specialist Centre (SC) for those patients with complicated IE is strongly recommended. A centre designated as a SC should have available expertise in basic and advance cardiac imaging with specialised cardiology and cardiothoracic services (refer Section 4.1.4).
 - The section on antimicrobial therapy (refer Section 4.2) covers both paediatric and adult dosing regimes. Included is a focus on therapy for BCNIE and empirical therapy based on our local setting and experiences. Appropriate antimicrobials should be started promptly once 3 specimens of blood cultures have been taken, as delayed treatment could have poorer outcomes.
 - The sections on indications and timing of surgery (refer Chapter 5.0) offer a paradigm shift as earlier surgical intervention has been shown to have a better outcome in IE patients in whom surgery is indicated.
 - We have also included the management of IE in some specialised patient groups e.g. patients with CHD, cardiac implantable electronic device (CIED) and transcatheter implantable valves to accommodate the advances in medical interventions.
• To initiate appropriate antimicrobial prophylaxis:
 > The committee has developed evidence-based recommendations for the prophylaxis of IE based on the predisposing risks and types of invasive procedures found in the local setting.
 > The current emphasis is on maintaining good dental and gum hygiene, and preventing oral disease.

The recommendations developed in this CPG were based on the latest available data and evidence, taking into account the local healthcare system structure and patients. Though there are certain areas that would require a shift from the norm, the committee hopes that these evidence-based recommendations will not only serve to effectively manage IE patients but to also improve their outcomes.
The annual incidence of IE in the adult population ranges between 3-9 per 100,000 subjects per year. However, as most of the available data come from developed countries, its true incidence in developing countries is unknown. Variability in the epidemiology of IE also exists between countries and continents with regards to patient profile, microbiological aetiology, treatment and outcomes.

In the developed countries, IE tends to affect patients between the ages of 50-60 years, in contrast to developing countries where it is commonly seen in the 20-40 years old age group. This is primarily due to a more ageing society in developed countries that relies on increasing invasive medical care, the presence of degenerative valve disease and co-morbidities. In developing countries, rheumatic heart disease is still the most common predisposing cause of IE. About 50% of IE in developing countries occur in patients with no known history of valve disease. Healthcare associated IE (refer to Appendix 1) is increasing with some studies reporting incidence of up to 25%. The gender distribution of IE is male to female case ratio of more than 2:1.

IE commonly affects native valves, usually involving the left-sided heart valves (2/3rd of the cases) with the mitral valve commonly affected. Streptococcus species (spp.) is the most common microorganism causing IE in developing countries, in the younger age group and in those with pre-existing structural heart disease compared to developed countries where Staphylococcal spp. tend to be more common.

Complication rates of IE have been reported to be high (16-33%) leading to high mortality rates of up to 39% in certain studies. In a prospective multicentre study, the following risk factors were shown to increase mortality in IE patients:

- Paravalvular complications (odds ratio; OR: 2.25).
- Pulmonary oedema (OR: 1.79).
- Staphylococcus aureus (S. aureus) infection (OR: 1.54).
- Prosthetic valve involvement (OR: 1.47).
- Increasing age (OR: 1.30).
- Mitral valve vegetation (OR: 1.34).
Although surgery can be associated with high risks,12 it has been shown to reduce mortality in complicated cases (hazard ratio; HR 0.33).6 Based on the available evidence, surgical intervention was required in about 50\% of IE patients.5,13 Prendergast \textit{et al.} stated surgery was required in 25-50\% of cases during acute infection and in 20-40\% during convalescence.12

A recent local study done in Hospital Kuala Lumpur14 (a tertiary inner city hospital) reported 36 cases of definite IE diagnosed over a period of 2 years (2013-2014). Eighty percent were male (male to female ratio 4:1) and the median age at presentation was 36 years (interquartile range; IQR 23). The predominant race affected was the Malays (60\%). In this urban inner city cohort,14 IE mainly affected normal valves (39\%), and intravenous drug use (IVDU) was the commonest predominant risk factor (36\%).

Methicillin-sensitive \textit{Staphylococcus aureus} (MSSA) was the predominant microorganism grown from blood cultures (30\%). All patients were treated with antimicrobials; with 91\% on antimicrobial therapy for a duration of 42 days or less. Five patients died (13.9\%) primarily due to overwhelming sepsis. Fifty-three percent of patients had indications for surgical intervention, however none had surgery within the index hospitalisation.14
3.0 DIAGNOSIS

As this disease affects multiple organ systems, patients with IE can present with very diverse clinical presentations making its diagnosis challenging. The clinical course of the disease can vary from subacute to acute infection, and each will manifest differently. Patients often visit multiple health practitioners before a correct diagnosis is made.

Making a clinical diagnosis of IE requires:

- Careful and thorough clinical history taking and physical examination.
- Laboratory investigations.
- Microbiological investigations.
- Histopathological examinations; HPE (when possible).
- Imaging, namely echocardiography and radiological investigations.

In difficult cases, consultation with other experts such as ID specialists, cardiac imaging specialists and microbiologists may be required.
3.1 Clinical evaluation of suspected infective endocarditis

The most common symptom at presentation (up to 87%) is fever associated with chills, poor appetite and weight loss. Heart failure may be present at admission (up to 58%) and there may be a new or altered cardiac murmur (50-85%). Embolic events may also cause presenting symptoms (27-30%) and these events may be singular or multiple in nature.

3.1.1 Pre-existing risk factors

A high level of suspicion of IE is warranted in patients with fever and pre-existing risk factors who present with non-specific symptoms. These are:

- Previous history of IE.
- Pre-existing cardiac disease.
- Presence of prosthetic valves or prosthetic cardiac material.
- Presence of intracardiac devices.
- History of IVDU.
- Presence of chronic intravenous access (e.g. haemodialysis catheters, chemoports and neonate/paediatric patients with indwelling central venous catheters).
- Presence of CHD (refer Section 7.1).
- Elderly or immunocompromised patients.
- Co-existing conditions such as diabetes, human immunodeficiency virus (HIV) infection and malignancy.
3.1.2 Clinical manifestations

Patients do not often present with classic textbook manifestations of subacute or chronic endocarditis. Therefore medical personnel should bear in mind that the symptoms and signs of IE can be general and/or system specific as presented in Table 3.1 below.

Table 3.1: Symptoms and signs of IE

<table>
<thead>
<tr>
<th>Symptoms and signs</th>
<th>Site</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Night sweats and chills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Weight loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fatigue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Body aches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Poor appetite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fever</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Anaemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Splinter haemorrhages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Nail beds of the fingers or toes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Osler’s nodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> Painful subcutaneous nodules (red-purple, slightly raised, tender lumps and with a pale centre)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Pulps of the fingers or toes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Janeway lesions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> Non-tender lesions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 1-4 mm in diameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> Often haemorrhagic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• On the palms and soles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fever is usually very high in acute IE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Temperature may be normal or subnormal in:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> Subacute cases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> Elderly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> Immunocompromised patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fever is usually very high in acute IE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• In subacute cases this may be anaemia of chronic disease or microcytic anaemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Examine all digits of upper and lower limbs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Exclude workplace trauma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Pain precedes the development of the visible lesion by up to 24 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Can occur at any time during the course of endocarditis (usually subacute)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Lasts from hours to several days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Lasts days to weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Commonly seen in acute endocarditis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The histology is usually consistent with septic microembolism</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.0 Diagnosis

<table>
<thead>
<tr>
<th>Symptoms and signs</th>
<th>Site</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital clubbing</td>
<td></td>
<td>• Usually seen in patients who have an extended period of untreated IE<sup>23</sup></td>
</tr>
<tr>
<td>Subconjunctival haemorrhages</td>
<td></td>
<td>• Examine both eyes</td>
</tr>
<tr>
<td>Generalised petechiae</td>
<td>Conjunctivae, Dorsa of the hands and feet, Anterior chest wall, Abdominal wall, Oral mucosa, Soft palate</td>
<td></td>
</tr>
<tr>
<td>Embolic lesions</td>
<td>Fingers and toes</td>
<td></td>
</tr>
<tr>
<td>Arthritis</td>
<td></td>
<td>• Asymmetrical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Single or multiple joints</td>
</tr>
</tbody>
</table>

Central

<table>
<thead>
<tr>
<th>Symptoms and signs</th>
<th>Site</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roth spots (white-centred retinal haemorrhages)</td>
<td>Retina</td>
<td>• Examine both eyes</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td></td>
<td>• Occurs with long-standing subacute disease</td>
</tr>
<tr>
<td>Haematuria</td>
<td></td>
<td>• May not resolve after treatment</td>
</tr>
<tr>
<td>Septic embolisation</td>
<td>Lung embolisation, Abdominal embolisation</td>
<td>• Occurs in right-sided IE causing pneumonia or lung abscess</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Splenic abscesses or infarcts</td>
</tr>
</tbody>
</table>

Cardiac

<table>
<thead>
<tr>
<th>Symptoms and signs</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murmurs</td>
<td>• Appearance of new murmur</td>
</tr>
<tr>
<td>Heart failure</td>
<td>• Usually due to valve dysfunction/regurgitant lesions</td>
</tr>
<tr>
<td>Bradycardia</td>
<td>• Indicates aortic root abscess interfering with cardiac conduction pathways</td>
</tr>
</tbody>
</table>
Symptoms and signs | Site | Comments
---|---|---
Neurological | • Focal signs: hemiparesis, aphasia and others | • Cerebral septic embolisation | • May be due to ischaemic/ haemorrhagic lesions or cerebral abscess
| • Delirium in meningitis, meningoencephalitis and encephalopathy | | • Occurs from purulent meningitis especially with acute IE
| • Intracranial bleeding | > Manifests as:
 » Confusion
 » Drowsiness
 » Reduced consciousness
 » Vomiting
 » Seizures | |
3.2 Investigations

3.2.1 Laboratory investigations
Laboratory tests for infection may aid the diagnosis of IE. These include:

- **Inflammatory markers:**
 - Elevated C-reactive protein (CRP).
 - Elevated erythrocyte sedimentation rate (ESR).
 - Procalcitonin (PCT):
 - > 2 and < 10 ng/ml: severe systemic inflammatory response or sepsis.
 - > 10 ng/ml: severe bacterial sepsis or septic shock.

PCT is available in Hospital Universiti Kebangsaan Malaysia (HUKM) and University Malaya Medical Centre (UMMC).

- **Complete blood count (CBC)/full blood count (FBC):**
 - Raised white cell count.
 - Low haemoglobin.

- **Urine full examination and microscopic examination (UFEME):**
 - Microscopic haematuria.

- **Blood culture and sensitivity (refer Section 3.2.2).**

With the exception of blood cultures, the above tests are not specific and may indicate other causes of sepsis.

3.2.2 Microbiological diagnosis
The microbiological diagnosis of IE can be divided into:

- Blood culture positive IE.
- Blood culture negative IE.
3.2.2.1 Blood culture positive infective endocarditis

Blood cultures should be taken before the commencement of empiric antimicrobial agents as it is critical to the diagnosis and treatment of patients with IE. In order to obtain high yield of positive blood cultures, the following considerations are crucial:24

A. Timing of blood cultures

- The blood cultures can be obtained at anytime:24
 - This is due to the continuous nature of bacteraemia associated with IE.
 - There is no necessity to wait for spikes of fever.
 - Blood cultures should be taken at 30-minute intervals between samples.24

B. Number of blood culture sets and the blood volume

- At least three sets of blood cultures:25
 - To distinguish between ‘false positive’ blood cultures due to skin contaminants from ‘true positive’ blood cultures.
 - Increases the volume of blood cultured, which is the most important factor in the recovery of microorganisms from blood.

- Microorganisms that are skin contaminants include:
 - Coagulase negative staphylococci.
 - Bacillus spp.
 - Corynebacterium spp. (diphteroids).
 - Propionibacterium spp., viridans group of streptococci (VGS).
 - Aerococcus spp.
 - Micrococcus spp.

These microorganisms may be considered as significant pathogens when they are cultured from 2 or more blood cultures drawn on separate occasions.

- If the initial 3 blood culture sets are negative at 24 hours, obtain 2 more sets of cultures, for a total of 5 sets overall.25
• A set includes 1 aerobic and 1 anaerobic bottle with samples taken from a single venepuncture site:
 > The anaerobic culture is vital for the growth of nutritionally variant streptococci (NVS) and facultative anaerobic microorganisms such as Enterobacteriaceae (refer Appendix 2).

• Each bottle should contain 10 ml of blood for adults and 1-3 ml of blood for paediatric patients (using the appropriate paediatric blood culture bottles).
 > Adequate volume is the most important factor in the recovery of microorganisms in IE.

• If the blood cultures are negative, BCNIE should be considered (refer Section 3.2.2.2).

C. Sampling sites of blood cultures
• Strict aseptic techniques should be observed (refer Appendix 3).
• Blood should be sampled from separate peripheral venepuncture sites.
• Avoid sampling from central venous or indwelling catheters. Catheter-drawn blood cultures have increased risk of contamination and thus may give rise to misleading interpretation.

D. Duration of incubation of blood cultures
• Within 5 days, most clinically important microorganisms including Haemophilus, Aggregatibacter actinomycetemcomitans, Cardiobacterium, Eikenella and Kingella (HACEK) will be isolated.
 > If all blood cultures are negative at 5 days and the diagnosis of IE is still being pursued consider:
 > BCNIE (refer Section 3.2.2.2).
 > Fungal IE.
 • Longer incubation time for a total of 2 weeks and appropriate selective culture media may be required when fungaemia or bacteraemia caused by fastidious microorganisms e.g. Legionella, Brucella or Nocardia spp. is suspected.
E. Identification of the microorganisms and antimicrobial susceptibility testing

- Identification must be rapid and done up to the level of the bacterial species.
- A newly available state-of-the-art technology in rapid bacterial identification is based on peptide spectra by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF) which is able to provide direct identification of bacteria in the blood culture supernatant. This has improved the turnaround time of bacterial identification tremendously.
- For decisions on optimal therapy in IE, especially for infections involving streptococci spp. and multidrug resistant microorganisms, it is recommended to test for susceptibility of antimicrobials by determining the minimal inhibitory concentration (MIC) of the drug.

3.2.2.2 Blood culture-negative infective endocarditis

In general, BCNIE indicates IE which has no microorganism grown following inoculation of at least 3 independent blood samples when using the usual currently available culture methods in clinical laboratories after 5 days of incubation.

- BCNIE can be due to 3 main reasons:
 > Partially treated IE by previous antimicrobial treatment, which is the most common cause (usually due to usual endocarditis-causing bacteria, i.e. streptococci, more rarely staphylococci, or enterococci).
 > For the isolation of fastidious bacteria such as *Brucella*, *Nocardia* spp., NVS and fungi other than yeasts, blood culture incubation may need to be extended for two weeks before a negative result is released. Specimens other than blood, e.g. excised tissue and aspirated intracardiac pus, incubation of the inoculated agar media beyond 48 hours may be needed. Special media and prolonged incubation is required for the isolation of *Legionella pneumophila*.
 > “True” BCNIE due to intracellular bacteria that cannot be routinely cultured in blood with currently available techniques (e.g. *Bartonella* spp., *Coxiella burnetti* and *Tropheryma whippelii*).

- Diagnosis of BCNIE (refer to Table 3.2):
 > Serological testing and molecular techniques such as polymerase chain reaction (PCR) assay aid in establishing the causative agent in BCNIE.
However limitations when using such assays are as follows:

- **Serology:**
 - Cross reaction of serological assays (e.g. IE caused by *Bartonella* and *Chlamydia* spp. are often indistinguishable).28

- **PCR:**
 - Low sensitivity of PCR when using blood specimens. It is however more sensitive when performed directly on cardiac valvular tissue16,29-31 or surgical material.
 - PCR findings should not be used to guide duration of therapy and should be interpreted in the context of other clinical information. This is due to persistence of bacterial deoxyribonucleic acid (DNA) even after eradication of viable microorganisms, causing false positive results.
Table 3.2: Fastidious and intracellular microorganisms, epidemiology and investigations

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Predisposing risk factors, epidemiology and exposure risks</th>
<th>Laboratory investigation</th>
</tr>
</thead>
</table>
| **Aspergillus and other non-** *Candida* fungi | Prosthetic valves | Culture: Blood culture
Serology: Galactomannan
PCR: Blood or cardiac valvular tissue/vegetations
HPE**: Cardiac tissue or emboli |
| **Bartonella spp.** | Cat contact or ownership (*Bartonella henselae*), chronic alcoholism, contact with human body louse and homeless shelters (*Bartonella quintana*) | Culture: Blood culture
Serology: IgG/IgM/total antibodies
HPE**: Cardiac valvular tissue |
| **Brucella spp.** | Ingestion of unpasteurised milk or cheese, contact with or occupational exposure to farm animals | Culture: Blood culture (requires extended incubation as 80% of cultures become positive with an incubation time of 4-6 weeks) and tissue
Serology: IgG/IgM and total antibodies
PCR: Blood |
| **Coxiella burnetti** | Ingestion of unpasteurised milk or cheese, contact with or occupational exposure to farm animals, or visit to farms | Serology: IgG/IgM
HPE**: Cardiac valvular tissue/vegetations |
| **Legionella spp.** | Prosthetic valves | PCR: Cardiac valvular tissue/vegetations
HPE**: Cardiac valvular tissue/vegetations |
| **Nutritionally variant streptococci** | Slow indolent course | Culture: Blood culture (culture on supplemented media or growth as satellite colonies around *S. aureus* streak) |

HPE consists of:

- Haematoxylin and Eosin (H&E) stain for basic morphology.
- Special stains which aid in the identification of the causative microorganisms of IE (refer Table 3.3).

IgG: immunoglobulin G; IgM: immunoglobulin M; HPE: histopathological examination.

Adapted from Mandell JE, et al. 2015.32

The directory of laboratories that perform the serological and PCR tests of the rare aetiological agents of IE is given in Appendix 4.
3.0 DIAGNOSIS

3.2.3 Histopathological diagnosis

Patients with IE often undergo surgery to repair or replace their heart valve. Histopathology when available is of diagnostic value. If excised tissue is obtained during cardiac surgery, it must be sent for HPE and culture.

Tissue specimens that can be sent are:

- Resected valvular tissue.
- Endocardial vegetation.
- Excised intracardiac abscess wall.

A diagnosis can be made from the pathological specimens if:

- Microorganisms are demonstrated by culture or on HPE.
- HPE shows active endocarditis.

The various special stains that are used to detect the infectious agents of interest in valvular tissue are shown in Table 3.3. For the preparation and transportation of cardiac tissue for HPE refer Appendix 5.
Table 3.3: Special stains which aid in the identification of the causative microorganisms of IE from cardiac tissue specimens

<table>
<thead>
<tr>
<th>Tissue stain</th>
<th>Detected microorganism</th>
</tr>
</thead>
<tbody>
<tr>
<td>General stain</td>
<td></td>
</tr>
<tr>
<td>Acridine orange</td>
<td>Any bacterium</td>
</tr>
<tr>
<td>Giemsa</td>
<td>Any bacterium</td>
</tr>
<tr>
<td>Tissue Gram Brown-Hopps Brown-Brenn</td>
<td>Gram-positive bacteria</td>
</tr>
<tr>
<td></td>
<td>Gram-negative bacteria</td>
</tr>
<tr>
<td>Specific stains</td>
<td></td>
</tr>
<tr>
<td>Periodic acid-Schiff</td>
<td>Tropheryma whippel<sup>33</sup></td>
</tr>
<tr>
<td></td>
<td>Fungi</td>
</tr>
<tr>
<td>Warthin-Starry</td>
<td>Bartonella spp.</td>
</tr>
<tr>
<td>Ziehl-Nielsen</td>
<td>Acid-fast bacilli</td>
</tr>
<tr>
<td>Gimenez</td>
<td>Coxiella burnetti</td>
</tr>
<tr>
<td></td>
<td>Legionella spp.</td>
</tr>
</tbody>
</table>

Adapted from P. Houpikian, D. Raoult 2003.³³

Recommendations

Processes to ensure successful microbiological diagnosis:

1. At least 3 sets of blood cultures to be taken at least 30 minutes apart. In adult patients, each bottle should contain 10 ml of blood. [IIa/C]
2. For optimal recovery of diverse aetiological agents, each set of blood cultures should include paired aerobic and anaerobic blood culture bottles. [IIa/C]
3. Sampling should be obtained from a peripheral vein rather than from a central venous catheter. [IIa/C]
4. An incubation period of blood cultures for 5 days is adequate for the detection of the majority of pathogens including those from the HACEK group. [IIa/C]
5. Pathological specimens obtained during cardiac surgery which are of diagnostic value, should be sent for HPE. [IIa/C]
3.0 DIAGNOSIS

Figure 3a: Approach to microbiological diagnosis of IE

Suspect IE

3 x blood culture

Start empirical antimicrobials (refer Section 4.2.3)

Culture positive

Identification of microorganisms
Antimicrobial susceptibility testing

Adjust antimicrobials accordingly

Culture negative

If no history of recent antimicrobial use or if there are risk factors for fastidious/intracellular pathogens**, request for prolonged incubation^.

Response to empirical antimicrobials

Yes

Send serology for *Brucella*, *Coxiella*, *Bartonella* and *Legionella*, and blood PCR if available**

No

Consider non-bacterial thrombotic endocarditis such as underlying malignancy, systemic lupus erythematosus (SLE) and, test for rheumatoid factor and antinuclear antibodies

**Refer Table 3.2 for the risk factors for fastidious/intracellular pathogens.

^*Legionella*, *Brucella*, *Nocardia* spp., fungi and NVS e.g. *Gemella*, *Granulicatella* and *Abiotrophia* may require longer incubation periods.

3.3 Imaging

3.3.1 Echocardiography

3.3.1.1 Echocardiography in diagnosis of infective endocarditis

Echocardiography plays a key role in the diagnosis of IE. The first line imaging investigation in suspected IE is usually transthoracic echocardiography (TTE) as it is non-invasive and widely available. TEE should be performed subsequently if indicated.

- In native valves, the sensitivity of TTE in diagnosing vegetations is 44-63%.\(^{35-38}\)
- For prosthetic valves, the diagnostic yield of TTE is much lower, 36-69% due to acoustic shadowing from the prosthetic material and a higher chance of annular infection which cannot be seen clearly on TTE.\(^{38}\)
- TEE enhances diagnostic sensitivity between 90-100% for native valves and 86-94% for prosthetic valves.\(^{38}\)
- The specificity of TTE and TEE exceeds 90% for both native and prosthetic valves whilst the specificity of TEE for vegetation on prosthetic valves is 88-100%.\(^{38}\)

Indications for TEE in patients with IE or those with pre-existing risk factors include:\(^{39}\)

- Poor or suboptimal transthoracic window (e.g. morbid obesity, chronic obstructive pulmonary disease; COPD and previous sternotomy).
- High clinical suspicion of IE but negative TTE (e.g. typical microorganism of IE found on blood cultures).
- Staphylococcal bacteraemia if community acquired without an obvious focus of infection (e.g. cellulitis).\(^{40,41}\)
- All cases of IE with prosthetic valves and prosthetic material such as conduits.
- High-risk features for complications (e.g. new atrioventricular; AV block on electrocardiogram; ECG which may indicate a periannular extension of infection).
- Perioperative TEE to assess mechanism and severity of valve dysfunction, perivalvular extensions and the success of surgery/ presence of residual lesions.\(^{42}\)
Echocardiographic findings suggestive of IE include (refer Table 3.4):1,43

- Vegetation.**
- Abscess.**
 > Abscess formation is a dynamic process, which starts with aortic root thickening that can be seen on TEE. If this finding is noted, a TEE should be repeated at a later time to confirm the diagnosis as the lesion progresses with formation of a cavity with no flow within.
- Pseudoaneurysms.
- New dehiscence of a prosthetic valve.
- Fistula.
- Perforation.
- Valve leaflet aneurysm.

**Documentation of vegetation or abscess sizes should be made by measuring their largest diameters in at least 2 dimensions rather than measuring the circumference. The view in which the measurement was made should also be documented.

Other important information to gather from an echocardiogram include:

- Haemodynamic and ventricular functional assessments:
 > Transthoracic Doppler echocardiogram is used to assess haemodynamic dysfunction as it is more reliable and reproducible compared to TEE.
 > For left ventricular systolic dysfunction, assessment of ejection fraction by using modified Simpson’s method and others such as tissue Doppler imaging is recommended.
 > For diastolic function, using pulse wave Doppler and tissue Doppler imaging is recommended. However, in situations where there are significant regurgitant lesions, the estimation of ventricular filling pressures by Doppler method is not accurate.
 > For right ventricular function, assessing systolic function visually or by using quantitative parameters, e.g. tricuspid annular systolic plane excursion (TAPSE) or fractional area change (FAC) can be used.
• Pulmonary artery pressure assessment by estimation of:
 > Right atrial pressure.
 > Tricuspid regurgitation peak velocity.
 > Pulmonary regurgitation end diastolic velocity.
• Assessment and quantification of valve regurgitation.
• Presence and quantification of pericardial effusion.

3.3.1.2 Interpretation of echocardiography
Echocardiography in IE can be challenging. This may be due to the absence of vegetations despite a high index of clinical suspicion or the presence of masses on the endocardial surface that are not due to infective vegetation. Therefore the results of the echocardiographic study must be interpreted with caution, taking into account the patient's clinical presentation and the likelihood of IE. The limitations of echocardiography in the diagnosis of IE should be noted as follows:

• The sensitivity and specificity of TTE and TEE are not 100%.
• A negative echocardiogram does not rule out IE.
• In some situations, a repeat TTE or repeat TEE may be necessary.
• Results of an echocardiogram must be interpreted with caution, as it is possible to have a false positive study (refer Table 3.5).
Table 3.4: Findings suggestive of IE and their anatomical and echocardiographic definitions

<table>
<thead>
<tr>
<th>Surgical or autopsy findings</th>
<th>Echocardiography findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetation</td>
<td></td>
</tr>
<tr>
<td>Infected mass attached to an endocardial structure or on implanted intracardiac material</td>
<td>Oscillating or non-oscillating intracardiac mass on valve or other endocardial structures, or on implanted intracardiac material</td>
</tr>
<tr>
<td>Abscess</td>
<td></td>
</tr>
<tr>
<td>Perivalvular cavity with necrosis and purulent material not communicating with the cardiovascular lumen</td>
<td>Thickened, non-homogeneous perivalvular area with echodense or echolucent appearance</td>
</tr>
<tr>
<td>Pseudoaneurysms</td>
<td></td>
</tr>
<tr>
<td>Perivalvular cavity communicating with the cardiovascular lumen</td>
<td>Pulsatile perivalvular echocardiographic-free space, with colour-Doppler detected</td>
</tr>
<tr>
<td>Perforation</td>
<td></td>
</tr>
<tr>
<td>Interruption of endocardial tissue continuity</td>
<td>Interruption of endocardial tissue continuity traversed by colour-Doppler</td>
</tr>
<tr>
<td>Fistula</td>
<td></td>
</tr>
<tr>
<td>Communication between two neighbouring cavities through a perforation</td>
<td>Colour-Doppler communication between two neighbouring cavities through a perforation</td>
</tr>
<tr>
<td>Valve aneurysm</td>
<td></td>
</tr>
<tr>
<td>Saccular outpouching of valvular tissue</td>
<td>Saccular bulging of valvular leaflet tissue</td>
</tr>
<tr>
<td>Dehiscence of a prosthetic valve</td>
<td></td>
</tr>
<tr>
<td>Dehiscence of the prosthesis</td>
<td>Paravalvular regurgitation identified by TTE/TEE, with or without rocking motion of the prosthesis</td>
</tr>
</tbody>
</table>

Table 3.5: Challenges in echocardiography interpretation in the context of IE

<table>
<thead>
<tr>
<th>False positive echocardiogram ("vegetation" seen but diagnosis is NOT IE)</th>
<th>False negative echocardiogram ("vegetation" not seen but diagnosis IS IE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This may be due to:</td>
<td>This may be due to:</td>
</tr>
<tr>
<td>• Thrombus</td>
<td>• Vegetations that have embolised</td>
</tr>
<tr>
<td>• Papillary fibroelastoma</td>
<td>• Initial/incipient abscess (if imaged early in the disease may appear like non-specific thickening)</td>
</tr>
<tr>
<td>• Lambl's excrescences</td>
<td>• Presence of pre-existing valvular lesions such as mitral valve prolapse and degenerative calcified valve disease</td>
</tr>
<tr>
<td>• Cusp prolapse</td>
<td>• Prosthetic valves</td>
</tr>
<tr>
<td>• Chordal rupture</td>
<td>• Small vegetations (< 2-3 mm)</td>
</tr>
<tr>
<td>• Degenerative or myxomatous valve disease</td>
<td>• Non-vegetant IE</td>
</tr>
<tr>
<td>• Strands</td>
<td>• Intracardiac devices (this is difficult even with the use of TEE)</td>
</tr>
<tr>
<td>• Systemic lupus (Libman-Sacks) lesions</td>
<td>• Sutures, suture pledgets and free floating chords in post-surgical patients (discuss with the operating surgeon)</td>
</tr>
<tr>
<td>• Primary antiphospholipid syndrome</td>
<td></td>
</tr>
<tr>
<td>• Rheumatoid lesions or marantic vegetations</td>
<td>If the clinical suspicion is high but initial imaging is negative, a repeat TTE or TEE is warranted within a week or even earlier in cases positive for S. aureus.</td>
</tr>
<tr>
<td>• Prominent Chiari network or Eustachian valve in the right atrium</td>
<td></td>
</tr>
</tbody>
</table>
Figure 3b: Use of echocardiography in the diagnosis and management of IE

Suspect IE

Initial TTE as soon as possible

Positive TTE findings

- Treat for IE
- Low predisposing risk
 - Good response to treatment
 - Repeat TTE as indicated and before discharge
 - Continue treatment and monitor for complications
 - Repeat TEE or TTE/other imaging where necessary
 - Surgical intervention when indicated (refer Chapter 5.0)

Negative TTE findings

- High predisposing risk
 - High clinical suspicion
 - Poor echocardiographic window/difficult to image on TTE
 - TEE
 - Positive TEE findings
 - Treat for IE
 - Echocardiographic findings suggest possible complications
 - Repeat TEE or TTE/other imaging where necessary
 - Surgical intervention when indicated (refer Chapter 5.0)

- Low risk
 - Low clinical suspicion
 - Investigate for other sources of fever and treat accordingly

Low predisposing risk

- Worsening clinical course
 - High predisposing risk
 - Echocardiographic findings suggest possible complications
 - TEE
 - Positive TEE findings
 - Treat for IE
 - TEE within a week

- Low risk
 - Repeat TEE or TTE/other imaging where necessary
 - Surgical intervention when indicated (refer Chapter 5.0)

TTE: Transoesophageal echocardiography; TTE: Transthoracic echocardiography; ECHO: echocardiogram. Refer Section 3.3.1 for positive and negative findings.

**E.g. a patient with fever and known heart murmur but with no other signs or symptoms of IE

§Includes presence of prosthetic valves, various CHD, appearance of new murmur, presence of heart failure, or other signs and symptoms of IE

Recommendations

The use of echocardiography in diagnosing IE:

1. Echocardiography should be performed as soon as possible in all patients suspected of having IE. [I/B]
2. If there is a high suspicion of IE despite an initial negative TTE/TEE, then a repeat TTE/TEE is recommended within a week or if clinical findings change. [I/C]
3. TEE should be done if initial TTE images are negative or inadequate in patients for whom there is a persistent suspicion for IE. [I/B]
4. TEE is advised in cases with prosthetic valves, prosthetic cardiac material or cases with high-risk features. [I/B]
5. The echocardiographic measurement of the size of the vegetation at its longest diameter is preferable rather than its circumference. Documentation of the window in which the measurement was done will be useful. [IIa/C]
6. Intraoperative TEE recommended for all cases of IE undergoing surgery. [I/B]
7. It may be reasonable to perform TTE at the time of antimicrobial therapy completion to record baseline features. [IIa/C]
3.3.2 Other imaging modalities

A. Multislice computed tomography

Multislice computed tomography (MSCT) in the context of IE maybe useful in the following situations:

- To:
 > Detect abscesses/pseudoaneurysms in the heart.44,45
 > Assess the extent and consequences of any perivalvular extension, including the anatomy of pseudoaneurysms, abscesses and fistulae.44,45

- To detect and assess extracardiac complications:
 > Concomitant pulmonary disease, e.g. abscesses and infarcts in right-sided/pulmonary endocarditis.
 > Evaluation for central nervous system (CNS) lesions (e.g. mycotic aneurysm).
 > Intra-abdominal lesions (e.g. silent splenic abscesses).
 > Peripheral vascular complications of IE (e.g. extracerebral mycotic aneurysms) and their follow-up.46

- To aid in surgical planning:
 > Pre-operative coronary assessments in unstable patients who are to undergo cardiac surgery for IE complications.47
 > To define the size, anatomy and calcification of the aortic valve, root and ascending aorta, in cases of IE affecting the aorta.

Limitations of MSCT:44

- Exposure to radiation.
- Nephrotoxicity associated with contrast dye.
- Relative lack of sensitivity to demonstrate valve perforations.
B. Magnetic resonance imaging

Magnetic resonance imaging (MRI) has a higher sensitivity than computed tomography (CT) in detecting cerebral embolic events, majority of which are clinically silent. Studies have shown that systematic cerebral MRI during acute IE has consistently reported frequent cerebral embolic lesions, in 60-80% of patients.

Most commonly seen abnormalities are:

- Ischaemic lesions (50-80%).
 - Small ischaemic lesions are more frequent than larger territorial infarcts.
- Parenchymal or subarachnoidal haemorrhage (≤ 10%).
- Abscesses or mycotic aneurysms (< 10%).

In IE patients with neurological symptoms:

- Cerebral MRI has no impact on the diagnosis of IE.
- It is often abnormal and more sensitive than CT in detecting lesions causing stroke, transient ischaemic attack (TIA) and encephalopathy.
- MRI may impact the therapeutic strategy, particularly the timing of surgery.

However in IE patients with no neurological symptoms:

- At least 50% show cerebral lesions on MRI, mostly ischaemic in nature.
- The detection of cerebral lesions on MRI adds 1 minor Duke criteria.

Systematic abdominal MRI:

- Has shown to detect lesions in one of three IE patients.
- Lesions occur most often in the spleen and commonly include splenic infarcts, abscesses and haemorrhagic lesions.

Whenever cerebral MRI findings are present, abdominal MRI is not indicated for the diagnosis of IE. However, it may play a role in further management (e.g. to detect intra-abdominal occult abscesses although CT abdomen would be the preferred investigation for this).
C. Nuclear imaging

New modalities in nuclear imaging like single-photon emission computed tomography (SPECT)/CT and positron emission tomography (PET)/CT are evolving as important supplementary assessments for patients with suspected IE and diagnostic difficulties. Several reports have shown promising results for radiolabelled white blood cell (WBC) SPECT/CT and fluorine-18 (F-18) fluorodeoxyglucose (FDG); 18F-FDG PET/CT imaging in IE. Nuclear imaging may be of added value in refining a ‘possible IE’ to a ‘definite IE’ based on the Duke criteria by detecting peripheral embolic and metastatic infectious lesions.54,55 There is also growing evidence that cardiac nuclear imaging can play a key role in the diagnosis and management of patients with suspected prosthetic valve endocarditis. Recent European Society of Cardiology (ESC) guidelines for the management of IE updated in 2015 have added 18F-FDG PET/CT or radiolabelled WBC SPECT/CT as a new major criterion if abnormal uptakes are found around the area of prosthetic valve implantation in patients with a prosthesis implanted for more than 3 months.16 However, the limited availability of these modalities in the local setting also limits its usage in the diagnosis and management of IE (refer Appendix 6).

KEY MESSAGE:

1. MSCT can be used to assess for perivalvular extensions and extracardiac complications and/or embolism.
2. MRI is more sensitive than CT in diagnosing cerebral embolic lesions many of which are silent.
3. Radiolabelled WBC SPECT/CT and 18F-FDG PET/CT may have a supplementary role in detecting peripheral embolic or metastatic infectious lesions in those with high clinical suspicion of IE and diagnostic difficulties. They may also be useful in diagnosing prosthetic valve endocarditis.
3.4 Diagnostic criteria

3.4.1 The modified Duke criteria and its limitations

The Duke criteria was first proposed in 1994 by Durack et al. from the Duke University Medical Centre, North Carolina, United State of America (USA). This was a diagnostic schema that stratified patients with suspected IE into 3 categories; definite, possible and rejected. In the year 2000, taking into account further evidence, the Duke criteria was refined further into the modified Duke criteria\(^5^6\) (refer Table 3.7) which is currently widely used in clinical practice.

The Duke criteria should be used as a research tool rather than a clinical tool for diagnosing IE, therefore clinicians should treat each individual patient appropriately. In very ill patients and patients in whom the diagnosis of IE is likely, empirical treatment should be started before blood culture results are available. This classification has a sensitivity of approximately 80% overall, when the criteria are evaluated at the end of patient follow-up in epidemiological studies.\(^5^7\)

Table 3.7: Definition of IE according to the modified Duke criteria

<table>
<thead>
<tr>
<th>Definite IE</th>
<th>Pathological criteria:</th>
<th>Microorganisms demonstrated by culture or HPE of a vegetation, a vegetation that has embolised, or an intracardiac abscess specimen; or pathological lesions; vegetation or intracardiac abscess confirmed by HPE showing active endocarditis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clinical criteria:</td>
<td>2 major criteria or 1 major criterion and 3 minor criteria or 5 minor criteria</td>
</tr>
<tr>
<td>Possible IE</td>
<td>1 major criterion and 1 minor criterion or 3 minor criteria</td>
<td></td>
</tr>
<tr>
<td>Rejected IE</td>
<td>Firm alternative diagnosis explaining evidence of IE or resolution of IE syndrome with antimicrobial therapy for (\leq 4) days or no pathological evidence of IE at surgery or autopsy with antimicrobial therapy for (\leq 4) days or does not meet criteria for possible IE as above</td>
<td></td>
</tr>
</tbody>
</table>
Major Criteria

<table>
<thead>
<tr>
<th>Blood culture positive for IE</th>
<th>Typical microorganisms consistent with IE from 2 separate blood cultures:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• VGS, Streptococcus bovis, HACEK group, S. aureus</td>
</tr>
<tr>
<td></td>
<td>• Or community-acquired enterococci in the absence of a primary focus</td>
</tr>
<tr>
<td></td>
<td>• Or microorganisms consistent with IE from persistently positive blood cultures defined as follows:</td>
</tr>
<tr>
<td></td>
<td>> At least 2 positive cultures of blood samples drawn > 12 hours apart</td>
</tr>
<tr>
<td></td>
<td>> Or all of 3 or a majority of ≥ 4 separate cultures of blood (with first and last sample drawn at least 1 hour apart)</td>
</tr>
<tr>
<td></td>
<td>• Single positive blood culture from Coxiella burnetii or phase 1 IgG antibody titres > 1:800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evidence of endocardial involvement</th>
<th>Echocardiogram positive for IE defined as follows:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Oscillating intracardiac mass on valve or supporting structures, in the path of regurgitant jets, or on implanted material in the absence of an alternative anatomic explanation</td>
</tr>
<tr>
<td></td>
<td>• Abscess</td>
</tr>
<tr>
<td></td>
<td>• Or new partial dehiscence of prosthetic valve</td>
</tr>
<tr>
<td></td>
<td>• Or new valvular regurgitation (worsening or changing or pre-existing murmur not sufficient)</td>
</tr>
</tbody>
</table>

(TEE is recommended for patients with prosthetic valves rated as at least possible IE by clinical criteria, or complicated IE (paravalvular abscess)

Minor Criteria

<table>
<thead>
<tr>
<th>Predisposition: predisposing heart condition or IVDU</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fever: temperature > 38°C</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Vascular phenomena: major arterial emboli, septic pulmonary infarcts, mycotic aneurysm, intracranial haemorrhage, conjunctival haemorrhages and Janeway lesions</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Immunological phenomena: glomerulonephritis, Osler nodes, Roth spots and rheumatoid factor</th>
</tr>
</thead>
</table>

| Microbiological evidence: positive blood cultures but does not meet a major criterion as noted above (excludes single positive cultures for coagulase-negative staphylococci and microorganisms that do not cause endocarditis) or serological evidence of active infection with microorganism consistent with IE |

Limitations of the modified Duke criteria include a lower diagnostic accuracy especially in:

- Early diagnosis.
- Prosthetic valve endocarditis (PVE) with sensitivity of TTE 36% and TEE 82%.\(^{58}\)
- Pacemaker or defibrillator lead IE with sensitivity of TTE 23% and TEE 94%.\(^{59}\)

In cases where clinical suspicion is high but the application of the Duke criteria yields “possible IE”, some other investigations that can be pursued include:

- Repeat TTE/TEE and proceed with advanced microbiological testing.
- Cardiac CT to look for periannular extension.
- Cerebral MRI to look for silent embolic events.
- SPECT/CT and \(^{18}\)F-FDG PET/CT especially for the assessment of prosthetic valve endocarditis.

KEY MESSAGE:

1. The modified Duke criteria are used as a guide to diagnose definite, possible and rejected IE.
2. For patients with possible or rejected IE in whom there is a high clinical suspicion of IE, it is advisable to consider further microbiological testing or other imaging modalities to guide in the diagnosis.
3. Clinicians should treat each individual patient accordingly.
Clinical suspicion of IE

Modified Duke Criteria

- **Definite IE**
 - Treat as IE
- **Possible IE**
 - High clinical suspicion
 - Repeat TTE/TEE
 - Additional microbiological investigations (refer Figure 3a)
 - Send cardiac tissue for HPE if available
 - Low clinical suspicion
 - Look for other causes
 - Treat as bacteraemia
- **Rejected IE**
 - Revise diagnosis
 - Definite IE
 - Possible IE
 - Rejected IE

Other imaging modalities:
- Cardiac CT (detect pseudoaneurysms, abscesses and fistulae) especially in patients with prosthetic valves/conduits (major criteria).[^47][^48]
- Screen for silent septic emboli:
 - CT/MRA brain: infarct/mycotic aneurysm (detection of cerebral lesions on MRI in patients with no neurological symptoms or signs adds 1 minor Duke criteria).
 - CTPA (pulmonary infarcts/abscesses/mycotic aneurysm) in right-sided IE.
- CT abdomen: splenic infarct.
- ^18F-FDG PET/CT and radiolabelled leucocyte SPECT/CT to detect silent metastatic infectious lesion/peripheral embolism.

[^18F-FDG: fluorine-18 (F-18) fluorodeoxyglucose (FDG); CT: computed tomography; CTPA: CT pulmonary angiogram; IE: infective endocarditis; MRA: magnetic resonance angiogram; MRI: magnetic resonance imaging; PET: positron emission tomography; SPECT: single photon emission computerised tomography; TEE: transthoracic echocardiography.]

4.0 MANAGEMENT

4.1 Clinical management

The major goals of management of IE are:

- To eradicate the infectious agent from the endocardium.
- To address the complications of the infection, both intra and extracardiac.

The mainstay of treatment for IE is appropriate antimicrobial therapy. Factors which maximise treatment success include:

- Early diagnosis.
- Accurate microorganism identification.
- Reliable susceptibility testing.
- Prolonged intravenous administration of bactericidal antimicrobial therapy.
- Proper monitoring of potentially toxic regimens.
- Aggressive surgical management of correctable mechanical complications.
4.0 MANAGEMENT

4.1.1 Monitoring
Whilst in the ward, general management steps include the monitoring of:

- **Clinical condition:**
 > Fever:
 » Fever usually resolves in a few days after commencement of appropriate antimicrobials.
 » However, fever may return after this initial period in 30% of cases.
 » If fever persists after 10 days of treatment, the patient should be evaluated for suppurrative complications (e.g. abscess collections in the abdomen, lungs or intracardiac abscess).
 > The patient should be examined regularly for symptoms and signs of the following:
 » Heart failure: symptoms should be treated with standard medical therapy and its severity regularly assessed. Heart failure may persist despite microbiological resolution.
 » Embolic events.
 » Ongoing sepsis.
 » Neurological sequelae.

- **ECG:**
 > Should be done daily to monitor heart rhythm and to look for conduction defects. This is especially important in cases of prosthetic valve IE or native valve IE as they are at higher risk for extension of infection to the conduction pathways which can occur very abruptly.
 > Conduction defects may be a sign of perivalvular extension of infection especially in cases involving the aortic valve.

- **Blood investigations:**
 > General investigations:
 » Regular levels of inflammatory markers e.g. CRP and ESR (daily in the acute period and at least twice weekly thereafter once the patient is more stable).
 » Regular FBC for total white cell count, haemoglobin and platelet count (thrombocytopenia).
 » Blood urea and electrolytes for signs of acute renal failure. Renal failure is a complication of IE and haemodialysis may be required.
 » Liver function tests.
 » Coagulation profile in patients on anticoagulation.
> Blood cultures:
 » Should be taken 3-4 days after the commencement of treatment to document the eradication of bacteraemia.
 » If the blood cultures remain positive despite adequate levels of appropriate antimicrobials, metastatic infection should be looked for.

• Echocardiography (refer Figure 3b):
 > TTE should be repeated if there is any change to the patient’s clinical condition.
 > During the course of management of IE, assess for:
 » Haemodynamics and/or cause of heart failure.
 » Causes of uncontrolled infection: paravalvular abscess, pseudoaneurysms or fistulae (using TEE).
 » Echocardiographic features for risk of embolisation (refer Section 4.1.2.3).
 » Monitor vegetation:
 ▪ Resolution of IE: vegetations gradually reduce in size, decrease in mobility and increase in echogenicity. In the long-term, these vegetations may not disappear or even change in size, even with clinical treatment success.
 ▪ Risk of embolisation: vegetations increase in size and mobility.
 » Monitor for rarer complications: e.g. purulent pericarditis (presence of fluid in the pericardial space), coronary obstruction (regional wall motion abnormality corresponding to coronary artery distribution) and myocarditis (general hypokinesia).
 > In uncomplicated cases, a baseline, pre-discharge TTE should be performed.

• Antimicrobial peak and trough levels should be done as appropriate. Patients should be assessed for clinical features of antimicrobial toxicity.
4.1.2 Complications

It is important to recognise the common and serious complications of IE, as cardiac surgery should be considered in circumstances involving such complications. The main complications of IE are:

- Heart failure.
- Persistent infection and perivalvular extension.
- Systemic embolism.
- Neurological complications.

All IE patients who develop cardiac complications should be referred to a SC (a centre with cardiology and cardiothoracic surgery services; refer Section 4.1.4) as most would need more advanced imaging, surgical intervention and cardiac intensive services.

4.1.2.1 Heart failure

Heart failure is the most common complication of IE, which occurs in up to half of all cases. It is the most important predictor of mortality. In most cases of IE, heart failure is usually caused by valvular dysfunction and not myocardial failure. Heart failure is more commonly associated with aortic valve dysfunction compared to mitral valve dysfunction. Less commonly, intracardiac fistulae may also cause heart failure. The clinical presentation of heart failure includes dyspnoea, pulmonary oedema and cardiogenic shock.

The management of heart failure in infective endocarditis

A. Imaging and monitoring in heart failure

Echocardiography (TTE or TEE) is important in the evaluation of:

- Acute valve regurgitation: if symptoms or signs of heart failure occur, an echocardiogram should be performed immediately to diagnose possible acute valve regurgitation, which carries a very high mortality. In acute regurgitation, the size of the chamber may be normal or only slightly enlarged. Ejection fraction may be normal. There may be findings of:
 > Extensive destruction of the valve leaflets.
 > Massive regurgitation.
 > Abscess or pseudoaneurysms.
However in cases of chronic valve regurgitation with superimposed IE, the size of the cardiac chamber may be enlarged with impaired systolic function.

- Valve perforation.
- Secondary mitral lesions.
- Aneurysms/fistula (are best assessed using TEE).
- Haemodynamic consequences of valvular dysfunction:
 > Measurement of pulmonary artery pressure.
 > Detection of pericardial effusion.
 > Assessment and monitoring of left ventricular systolic function.

B. Heart failure marker
- N-terminal pro brain-type natriuretic peptide (NT-proBNP) is useful in diagnosing heart failure and effectiveness of medical therapy.

- Pharmacotherapy:
 > Diuretics (e.g. furosemide).
 > Intravenous diuretics are indicated for patients with symptoms of acute pulmonary oedema or fluid overload (raised jugular venous pressure; JVP and ankle oedema).
 > Angiotensin converting enzyme (ACE) inhibitors.
 > Beta-blockers:
 » Although beta-blockade in acute heart failure may cause harm and beta-blockers should also not be used in aortic regurgitation as this will increase diastolic time and regurgitation volume.

D. Surgical management (refer Chapter 5.0)
- Indication and timing:
 > All cases of IE with acute heart failure should be stabilised with medical management and referred for consideration of surgery.
 > Although surgery is urgent, the timing should be agreed with the surgical team in order to optimise the patient’s condition to minimise surgical risk.
4.1.2.2 Persistent infection and perivalvular extension

If after 7-10 days of antimicrobial therapy, there is persistent fever and positive blood cultures, assess for the following possibilities and manage accordingly:

- Inadequate or inappropriate antimicrobial therapy.
- Resistant microorganisms.
- Complications: perivalvular extensions and extracardiac septic embolisation.
- Thrombophlebitis/infected intravenous lines.

In cases of both suspected persistent infection and perivalvular extension, the following should be considered:

- Regular (e.g. daily) ECG to monitor for conduction abnormalities e.g. AV block.
- Perform a TEE in cases of persistent fever especially in those with prosthetic valves, aortic valve IE and S. aureus infection, or new AV block.
- Perform an ECG-gated cardiac CT scan to assess for aortic root abscess or perivalvular extension in cases when TEE facilities are not available.
4.1.2.3 Systemic embolism

The risk of systemic embolism is very high in IE (20-50%) and life-threatening complications are often related to the migration of cardiac vegetations. The risk is highest during the first days following the initiation of antimicrobial therapy and rapidly decreases subsequent to that.61,67 Frequent sites for embolisation in left-sided IE are the brain and spleen whilst pulmonary embolism frequently occurs in native right-sided and pacemaker lead IE.68 Stroke is a major complication and is associated with increased morbidity and mortality.68

Factors associated with an increased risk of embolism are:

- Vegetation size > 10 mm (higher risk if > 15 mm).69
- Mobility of vegetations.69
- Location of the vegetation on the anterior mitral valve leaflet.
- Increase in the size of the vegetation under antimicrobial therapy.60
- \textit{S. aureus}60 and \textit{Streptococcus bovis}70 infection.
- Fungal endocarditis.
- Previous embolism.61
- Multivalvular IE.71
- Biological markers (e.g. elevated CRP).72

Embolisation may occur before diagnosis, usually within the first 2-4 weeks of therapy or after antimicrobial therapy.68 Late embolisation can occur up to 15-30 weeks after diagnosis usually due to poor response to antimicrobial treatment. In order to predict the risk of embolic events, several features can be assessed with the use of echocardiography. They are usually related to the size, mobility and the location of the vegetation.60,68

Distal emboli may lead to metastatic infection or abscesses.63 Emboli may also involve other systemic organs such as the liver, kidneys and abdominal mesenteric vessels.63 Osteomyelitis is estimated to occur in 2-6% of cases of IE and is more common in intravenous (IV) drug abusers.73 18F-FDG PET/CT imaging in IE has been useful in detecting peripheral embolic and metastatic infectious events in some cases where other diagnostic imaging has not identified foci.54
4.1.2.4 Neurological complications

IE can have profound and devastating neurological consequences. Neurological complications can occur before or during the diagnosis of IE, but they can also occur later in the clinical course of IE. Symptomatic neurological events develop in 25-40% of patients with IE.4,46,74

Most neurological complications occur early in the course of IE and they are most common in left-sided IE. The most common complications are ischaemic and haemorrhagic complications.

Diagnosis of neurological complications

It is important to make the diagnosis of neurological complications early, as well as to assess the severity of the complication. Intracerebral events are diagnosed by history-taking, clinical examination, and by imaging modalities. Imaging modalities commonly used for the assessment of intracerebral events include:

- CT scan, with or without contrast agents (most commonly performed).
- MRI, with or without gadolinium enhancement (better detection in patients with focal neurological lesions and may also detect lesions in patients without symptoms e.g. microbleeds). In addition to normal sequences, diffusion-weighted magnetic resonance imaging (DWI)/T2-weighted (T2W) gradient-echo (GRE) sequences are important to show asymptomatic infarcts or small microbleeds respectively.
- Cerebral angiography is advisable when there is strong clinical suspicion of mycotic aneurysm despite negative findings on non-invasive imaging modalities.

Imaging investigations should be done as soon as clinical features appear, preferably within 24 hours. The presence of neurological complications, its type and severity is important as it will impact the optimal management of IE. It is of particular importance to be specific when describing and grading the neurological complications of IE (refer Table 4.1).
Table 4.1: Description of neurological complications

<table>
<thead>
<tr>
<th>Neurologic complication</th>
<th>Epidemiology</th>
<th>Clinical manifestation in IE</th>
<th>Management</th>
<th>Implications for cardiac surgery if indicated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischaemic</td>
<td>Clinically present in 20-40% of patients with IE. Asymptomatic ischaemia can be found in an additional 30-40% of patients with IE. Can be divided into: • Small ischaemic complications such as TIA or minor infarction affecting < 30% of a brain lobe or clinically silent infarcts. • Moderate-severe ischaemic complication such as multiple cerebral embolisms or a single embolism affecting ≥ 30% of a brain lobe.</td>
<td>Focal deficits, encephalopathy and seizures.</td>
<td>Avoid IV tissue plasminogen activator (tPA) or streptokinase, antiplatelet agents and warfarin.76,77 Decision to withhold anticoagulation should be individualised and dependent on the multidisciplinary team (IE team).</td>
<td>As the evidence is not yet strong enough to make a uniform recommendation, these decisions should be individualised in consultation with all members of the IE team. Clinically silent or small lesions should not delay cardiac surgery. Larger infarcts may warrant a delay (refer Chapter 5.0).</td>
</tr>
</tbody>
</table>
4.0 MANAGEMENT

<table>
<thead>
<tr>
<th>Neurologic complication</th>
<th>Epidemiology</th>
<th>Clinical manifestation in IE</th>
<th>Management</th>
<th>Implications for cardiac surgery if indicated</th>
</tr>
</thead>
</table>
| **Haemorrhagic** | Present in 4-27% of patients with IE. These include:
• Primary intracerebral haemorrhage.
• Haemorrhagic infarction (transformation).
• Subarachnoid haemorrhage.
• Microhaemorrhage is present in up to 57% of patients with IE. | Focal deficits, headache, encephalopathy and seizure. | Native valve: avoid all antiplatelets and anticoagulants.
Prosthetic valves: stop anticoagulation with close monitoring and evaluation of the patient’s clinical condition for at least 2 weeks.
Consider magnetic resonance angiogram (MRA) in this group of patients and refer for Neurology consult (for best timing to recommence the anticoagulation).
Consider conversion to heparin in anticipation of surgical intervention.
As the evidence is not yet strong enough to make a uniform recommendation, these decisions should be individualised in consultation with all members of the specialist team. | Postpone cardiac surgery for 4 weeks following clinically significant haemorrhage.
79, 80 |
<table>
<thead>
<tr>
<th>Neurologic complication</th>
<th>Epidemiology</th>
<th>Clinical manifestation in IE</th>
<th>Management</th>
<th>Implications for cardiac surgery if indicated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycotic aneurysms</td>
<td>Present in at least 2-4% of patients with IE.</td>
<td>Headaches, seizures, focal deficits, encephalopathy, ophthalmoplegia and rarely proptosis.</td>
<td>Antimicrobials and serial imaging for stable, small, unruptured aneurysms. Endovascular repair of large or enlarging unruptured aneurysms, if suitable. Open surgical clipping for large or enlarging unruptured aneurysms not amenable to endovascular repair or in areas where surgical anastomoses may spare function. Any anticoagulation should be stopped and the decision to restart should be made in consultation with all members of the IE team.</td>
<td>Postpone cardiac surgery for 1-2 weeks following aneurysmal repair.</td>
</tr>
<tr>
<td>Cerebral abscess</td>
<td>Present in 1-7% of patients with IE.</td>
<td>Focal deficits, headache, encephalopathy, unresolved sepsis and seizures.</td>
<td>Antimicrobials alone for small or multifocal abscesses. Surgical drainage for abscesses that are large or do not respond to antimicrobials. Neurosurgical intervention as appropriate for hydrocephalus or significant mass effect.</td>
<td>Typically will not interfere with surgical planning. Prioritise neurosurgical intervention in the setting of hydrocephalus or significant mass effect.</td>
</tr>
</tbody>
</table>
4.0 MANAGEMENT

<table>
<thead>
<tr>
<th>Neurologic complication</th>
<th>Epidemiology</th>
<th>Clinical manifestation in IE</th>
<th>Management</th>
<th>Implications for cardiac surgery if indicated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meningitis</td>
<td>Present in 1-20% of patients with IE.</td>
<td>Headache, encephalopathy, seizures, neck/back pain, nuchal rigidity and photophobia.</td>
<td>At least 4 weeks of antimicrobials.</td>
<td>Typically will not interfere with surgical planning.</td>
</tr>
</tbody>
</table>

Adapted from Morris et al. Neurohospitalist. 2014.

- Patients at highest risk of morbidity and mortality are those who had moderate-severe ischaemic strokes and intracranial haemorrhage.
- Antimicrobial therapy should be started as soon as possible as the rate of neurological complications reduces significantly after one week of treatment.
- Anticoagulation therapy (warfarin or heparin) should be reviewed and adjusted according to clinical status (e.g. S. aureus IE in the presence of a mechanical prosthetic valve).
- However, despite antimicrobial therapy, patients with large vegetations (> 10 mm) should be considered for early surgical intervention (refer Chapter 5.0).

Management of neurological complications

A. General Principles

Some general measures in the management of neurological complications:

- Antimicrobial therapy should be started as soon as diagnosis is made to reduce the development of complications in the first week.
- The duration of antimicrobial therapy will depend on the type of complication and microorganism involved (refer Section 4.2).
- In the event of any neurological complication, it is advisable to refer to a neurologist for consultation and further management.
- Referrals to a neurosurgeon and interventional radiologist may be needed in the event of an intracerebral bleed, mycotic aneurysm or brain abscess.
B. Management of ischaemic and haemorrhagic complications

Ischaemic stroke and haemorrhagic events are associated with higher mortality. Therefore, it is crucial to anticipate the potential risk in patients with predisposing factors for embolisation (refer Section 4.1.2.3), make a rapid diagnosis and initiate appropriate antimicrobials as soon as possible to prevent a first or recurrent neurological event.80

C. Management of mycotic aneurysms

An aneurysm is a focal arterial dilatation involving all three layers of the arterial wall. Aneurysmal degeneration secondary to bacteraemia or septic embolisation is called a mycotic aneurysm. They are thin walled, friable and rupture easily resulting in intracranial haemorrhage. Cerebral mycotic aneurysms are a rare and deadly type of aneurysm that have no definitive treatment guidelines and represent 0.7-5.4\% of all cerebral aneurysms. The mortality rate after rupture could reach as high as 80\%.82 The diagnosis of mycotic aneurysm is made by magnetic resonance angiography (MRA) or cerebral angiography.

The evolution of mycotic aneurysms is unpredictable even after antimicrobial therapy and variable outcomes have been reported.83 Predictive factors for aneurysmal rupture have not been ascertained up to date.

The treatment of mycotic aneurysms should be tailored according to response to antimicrobial therapy, location of aneurysm and clinical status of the patient. They can be treated surgically, endovascularly or by watchful waiting. Cerebral mycotic aneurysms should be treated by a multidisciplinary team in a tertiary centre. This team consists of cardiologists, neurosurgeons, interventional neuroradiologists, neurologists and intensivists. In addition, this centre must have facilities and expertise to manage cerebral mycotic aneurysm patients. There are many factors which determine the choice of management, either open surgery or endovascular management. However, the most important are the following:82

- The morphology and location of the aneurysm.
- Whether it is possible to sacrifice the parent artery.
- Whether the patient needs or has received valve replacement surgery.
- The patient’s overall status.

Decisions by the multidisciplinary team should be followed after discussion with the patient and family members.
If cardiac surgery is needed in the presence of a mycotic aneurysm, pre-operative endovascular intervention may be considered. Endovascular intervention involves occluding the aneurysm with a coil or other occluder materials (such as autologous clots or polyvinyl alcohol microparticles) and can be done safely with good outcomes in centres with available expertise.83

The role for routine MRA or cerebral angiography in all patients with left-sided IE is unknown as is the role of prophylactic coiling of all asymptomatic mycotic aneurysms.

D. Management of brain abscess, meningitis or encephalitis.

In the event of these complications, consultation from a neurologist and ID specialist should be sought.

Recommendations

In the management of complications in IE:

1. Surgery should be considered in patients with acute heart failure due to mechanical complications (refer Chapter 5.0). [I/B]
2. Further imaging should be considered in patients with persistent infection or high-risk for systemic embolisation. [IIa/C]
3. A multidisciplinary team inclusive of a neurologist with or without a neurosurgeon is recommended in the management of patients with IE and neurological complications. [I/C]
4. If cardiac surgery is indicated in the presence of cerebral mycotic aneurysm, pre-operative endovascular or neurosurgical intervention may be considered. [IIb/C]
4.0 MANAGEMENT

4.1.3 Issues with anticoagulation

Cerebral injuries occur in 20-40% of patients during the active course of IE.84 These include ischaemic stroke, TIA or intracerebral haemorrhage. The management of ischaemic stroke due to IE is different to ischaemic strokes from non-infective causes with regards to anticoagulation.

Anticoagulation in the setting of IE raises concerns of intracerebral haemorrhage, an often fatal event. Cerebral haemorrhage in endocarditis occurs through one of three mechanisms:

- Acute pyogenic arteritis secondary to uncontrolled infection.
- Haemorrhagic transformation of embolic infarcts.
- Rupture of dilated mycotic aneurysms.

Antiplatelet therapy

The potential role of antiplatelet therapy such as aspirin to reduce cerebrovascular events in IE has been investigated.

- Aspirin has not been shown to be of clear benefit as an adjunctive treatment in reducing mortality or morbidity in IE75,85 and initiation of aspirin as treatment for IE is not recommended.
- In patients who were on aspirin long-term prior to the diagnosis of IE, it may be continued if there are no bleeding complications.86
- The role of other antiplatelet agents such as clopidogrel has not yet been extensively investigated.

Anticoagulation with warfarin

Cerebral haemorrhage is a major determinant of poor clinical outcome in IE.

A. Native valve infective endocarditis

- No evidence of a cerebrovascular ischaemic or haemorrhagic event.
 > Warfarin may be continued for those who are on anticoagulation with warfarin for non-valvular indications (e.g. atrial fibrillation and deep vein thrombosis).87
4.0 MANAGEMENT

- Presence of a cerebrovascular ischaemic or haemorrhagic event.
 > Warfarin should be stopped to prevent haemorrhagic transformation (in the case of ischaemic stroke) or expansion of the haemorrhagic event.88
 > Warfarin may be recommenced 2-3 weeks after the event or until the period of sepsis is over.89
 > The role of low molecular weight heparin (LMWH) and new oral anticoagulants (NOAC) in this context is not known. It is advisable to stop all forms of anticoagulation such as NOAC or LMWH in the event of an ischaemic stroke or intracerebral haemorrhage in IE patients.81

B. Mechanical prosthetic valve infective endocarditis

Patients with mechanical prosthetic valves require anticoagulation with warfarin because of the risk of thromboembolic complications. Mechanical prosthetic valve IE (MPVIE) carries a higher mortality and poorer prognosis compared to native valve IE (NVE).90,91 In MPVIE, the risks of cerebral haemorrhage with continued anticoagulation need to be weighed against the risk of thromboembolic complications from the mechanical prosthesis if anticoagulation is stopped.

The thromboembolic risk is higher with certain features such as:92

- Prosthetic mitral valves rather than aortic valves.
- Non-bileaflet valves.
- Early post-operative period (< 3 months) rather than late post-operative period.
- Presence of atrial fibrillation.
- Left ventricular dysfunction.
- Left atrial dilatation.
- Previous thromboembolic events.
- Hypercoagulable conditions (e.g. pregnancy).

In the event that a major ischaemic cerebral event occurs in MPVIE, it is reasonable to:

- Stop warfarin for at least 2-3 weeks during the period of highest risk for haemorrhagic transformation.
- Unfractionated heparin may be used from the 2nd week after stopping warfarin under close monitoring to reduce the thromboembolic complications from the mechanical valve prosthesis.
- Patients with MPVIE due to \textit{S. aureus} have been shown to be at much higher risk for cerebral haemorrhage. In these cases, even if there is no neurological complication, once diagnosis of IE is made warfarin can be stopped and substituted with unfractionated heparin for 2 weeks.
In the event of intracranial bleeding occurring in MPVIE:

- Anticoagulation should be stopped.
- Anticoagulation should be avoided during the first 2 weeks as the risk of further bleeding and expansion of the intracerebral haemorrhage is highest during this period.
- It is reasonable in most cases to restart anticoagulation with caution using unfractionated heparin after 2 weeks as the risk of further intracranial bleeding is low after 2 weeks, while the risk of thromboembolic complications in mechanical prosthetic valves without anticoagulation increases.\(^{89,93}\)
- In cases where the risk of further intracranial bleeding after 2 weeks is judged to be high by the neurosurgical team, this must be balanced with the risk of thromboembolic complications from the mechanical prosthetic valve without anticoagulation, and a consensus decision made by the team.
- In those patients with MPVIE who may require imminent surgery it is advisable to discontinue warfarin at the time of diagnosis until the management plan is elucidated.
- If surgery is not indicated and the patient is deemed stable without contraindications or neurologic complications, warfarin can be restarted with caution.\(^{94}\)

Restarting anticoagulation should be done very cautiously starting with intravenous unfractionated heparin guided by activated partial thromboplastin time (aPTT) monitoring and subsequently with dose adjusted warfarin. The role of LMWH in this context is not known. There are currently no guidelines on the use of NOAC for mechanical prosthetic valves. A Phase II trial on dabigatran in mechanical valves was terminated early due to excess bleeding in the dabigatran arm.

Recommendations

On the use of anticoagulants in IE patients with neurological complications:

1. In the event of intracranial bleeding, anticoagulation should be stopped. [II/B]
2. In MPVIE complicated by a major ischaemic cerebral event, it is reasonable to stop anticoagulation with warfarin for 2-3 weeks and cautiously substitute with intravenous unfractionated heparin after 2 weeks. [IIa/C]
3. In MPVIE due to *S. aureus*, it may be reasonable to stop warfarin and substitute with unfractionated heparin for 2 weeks, even with no neurological complication. [IIa/C]
4. In the event of intracranial bleeding, it is reasonable to stop warfarin for 2 weeks and anticoagulate with unfractionated heparin after 2 weeks in most cases. [IIa/C]
4.1.4 Referral for specialist care

IE is an unusual disease for a few reasons:

- The clinical manifestation, predisposing risk factors and epidemiology of IE can be very variable.
- Despite being relatively rare, it has significant morbidity and mortality.
- Ideal management of IE requires multiple, highly specialised expertise in one centre which is often not widely available. These include but are not limited to: echocardiologists, ID specialists, cardiac surgeons, interventional radiologists, neurologists, neurosurgeons and microbiologists.

To ensure a good outcome and to prevent complications, it is important to establish an accurate diagnosis early and institute appropriate treatment. It is recommended to have a multidisciplinary team approach in the management of patients with IE especially those with high-risk features. Where indicated, these patients may need additional subspecialty consultation or referral to a specialist centre. A **Specialist Centre (SC)** is defined here as a hospital with cardiothoracic, cardiac imaging and specialised cardiology services (refer Appendix 7).

Referral to a SC is recommended in the following situations (refer Table 4.2):

- Strong clinical suspicion of IE but TTE negative.
 > Requires TEE and/or other imaging modalities to diagnose IE and to monitor for complications.
- Patients with high predisposing risks.
 > Prosthetic valves or material (e.g. conduit IE, prosthetic shunts and intracardiac devices).
 > Transcatheter valve implantation (e.g. transcatheter aortic valve implantation; TAVI and pulmonary valve implantation; PVI).
 > CIED infections.
 > CHD.
- Patients with indications for cardiac surgery (refer Section 5.1).
- Patients with cardiac complications.
 > Valvular dysfunction especially of the left-sided valves.
 > Cardiac abscess (confirmed or suspected).
 > Congestive heart failure.
 > Metastatic infection.
Specific situations that may need other non-cardiac consultations:

- **ID and microbiology:**
 - BCNIE.
 - Persistent infection that is not responding to treatment.
- **Neurology/neurosurgery:**
 - Patients with neurological complications.
- **Haematology:**
 - Patients who are on anticoagulation with coagulopathies and haemorrhagic complications.

Patients with non-complicated IE can be managed in a centre with internal medicine specialists. These are patients with:

- Mild-moderate abnormality of cardiac valvular function with no heart failure.
- Native valves only.
- Not more than mild ischaemic neurological complications (involving < 30% of a lobe).

However, in the event that complications arise they should be referred to a SC.

Table 4.2: Specific clinical situations needing referrals/specialised consultation

<table>
<thead>
<tr>
<th>Complicated IE (requires transfer to a SC if possible or constant consultation with a SC)</th>
<th>Non-complicated IE (manage in centre with internal medicine specialists but refer to SC in the event complications arise)</th>
</tr>
</thead>
</table>
| - Heart failure
- Perivalvular extensions
- Embolic complication
- Neurological complication**
- Metastatic or uncontrolled infection*
- CHD
- Prosthetic valve
- CIED
- Transcatheter implantable valves or devices | - Mild-moderate abnormality of cardiac valvular function with no heart failure
- Native valves only
- Not more than mild ischaemic neurological complications (involving < 30% of a lobe) |

Additional consultation with non-cardiac subspecialties: **neurology/neurosurgery; *ID and microbiology.
A Specialist Centre (SC) is defined as a centre with cardiothoracic, cardiac imaging and specialised cardiology services.

Patients with high predisposing risk for complications, with indications for cardiac surgery and with cardiac complications should ideally be referred to a SC.

Recommendations

For referral of IE patients for specialist care:

1. IE should be preferably managed by a multidisciplinary team with the necessary expertise in endocarditis management. [IIa/B]
2. Patients with complicated IE should be considered for referral to a SC. [IIa/C]
4.1.5 Pre-discharge management

All patients who have experienced an episode of IE remain at high-risk for recurrent infection indefinitely (refer Appendix 1). Those with significant valvular regurgitation and/or cardiac lesions who have completed successful antimicrobial therapy may require eventual cardiac surgery. The assessment for timing of surgical intervention can be guided by the clinical status and serial echocardiographic evaluation.

Therefore, prior to discharge, patients who have had appropriate and effective medical treatment and surgery (if necessary) should undergo the following:

- Detailed physical assessment to document the clinical status (blood pressure, heart rate and rhythm should be documented).
- Laboratory investigations e.g. inflammatory markers, FBC and serology (improving trend/resolution of infection).
- Echocardiography to establish a new baseline (most often TTE is adequate).
- Evaluation of toxicity resulting from prolonged antimicrobial use such as renal function, ototoxicity and diarrhoea (refer Section 4.2).
- Counselling or rehabilitation for IVDU.
- Education and counselling on:
 > Recognition of relapsing infection e.g. fever, chills, rigors and the need for blood cultures BEFORE starting any antimicrobials (even oral ones).
 > Heart failure signs and symptoms in case of mechanical deterioration of cardiac function.
 > Good oral hygiene and when indicated, antimicrobial prophylaxis prior to dental procedures (refer Chapter 8).

Recommendations

For pre-discharge assessment of IE patients:

1. Pre-discharge echocardiogram is recommended to establish a new baseline. [IIa/C]
2. Education to patients on recognising relapses, complications and oral hygiene is recommended. [IIa/C]
4.2 Antimicrobial therapy: principles and methods

4.2.1 General principles

General principles for the treatment of IE include:

- Parenteral antimicrobials in high dose to sustain antibacterial concentrations for treatment success.
- Bactericidal antimicrobials are necessary for effective treatment.
- Adequate duration is required to prevent relapses.

4.2.2 Suggested regimes for treatment of native or prosthetic valve infective endocarditis

The choice of antimicrobials will depend on the type of microorganism isolated and whether it is a native or a prosthetic valve IE. These are presented in the tables below. All doses quoted are for patients with normal renal function. For dosing adjustment in patients with renal impairment refer to Appendices 8 and 9.
4.2.2.1 Streptococcus viridans

Table 4.3: Endocarditis due to penicillin-susceptible viridans group streptococci (VGS) and *S. gallolyticus (bovis)*

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Dosage and route</th>
<th>Duration of therapy (weeks)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin-susceptible VGS and S. gallolyticus (bovis) (MIC ≤ 0.125 µg/ml) – native and prosthetic valve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzyl penicillin (Crystalline penicillin)</td>
<td>3MU** every 4 to 6 hourly or 12-18 MU/day as a continuous infusion **MU = mega unit; 600 mg = 1 MU</td>
<td>4 (native) 6 (prosthetic)</td>
<td></td>
</tr>
<tr>
<td>Ampicillin</td>
<td>2 g IV 4 hourly</td>
<td>300 mg/kg/day IV in 4-6 equally divided doses</td>
<td></td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>2 g IV once daily</td>
<td>100 mg/kg/day IV in 1-2 equally divided doses (maximum 4 g/day)</td>
<td></td>
</tr>
<tr>
<td>Vancomycin(^{b,c})</td>
<td>15-20 mg/kg/dose (actual body weight) IV every 8-12 hourly; not to exceed 2 g/dose</td>
<td>4 (native) 6 (prosthetic)</td>
<td>Vancomycin therapy is recommended only for patients with immediate-type penicillin hypersensitivity.</td>
</tr>
</tbody>
</table>
4.0 MANAGEMENT

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Dosage and route</th>
<th>Duration of therapy (weeks)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relatively resistant to penicillin VGS and S. gallolyticus (bovis) (MIC > 0.125 to 2 µg/ml) – native valve endocarditis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzyl penicillin (Crystalline penicillin) OR Ceftriaxone PLUS (Low dose) Gentamicin</td>
<td>4 MU** 4 hourly or 24 MU/day as continuous infusion</td>
<td>200,000 - 300,000 units/kg/day IV in 4-6 equally divided doses (up to 12-18 MU daily)</td>
<td>4 (native) 6 (prosthetic)</td>
</tr>
<tr>
<td></td>
<td>MU = megaunit; 600 mg = 1 MU</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 g IV once daily</td>
<td>100 mg/kg/day IV in 1-2 equally divided doses (maximum 4 g/day)</td>
<td>2 (native) 6 (prosthetic)</td>
</tr>
<tr>
<td></td>
<td>(Low dose) Gentamicin</td>
<td>3 mg/kg/day IV once daily</td>
<td>1 mg/kg IV 8 hourly</td>
</tr>
<tr>
<td>Vancomycinbc PLUS (Low dose) Gentamicind</td>
<td>15-20 mg/kg/dose (actual body weight) IV every 8-12 hourly; not to exceed 2 g/dose</td>
<td>40 mg/kg/day IV in 3 equally divided doses (maximum 2g/day)</td>
<td>4 (native) 6 (prosthetic)</td>
</tr>
<tr>
<td></td>
<td>(Low dose) Gentamicin</td>
<td>3 mg/kg/day IV once daily</td>
<td>1 mg/kg IV 8 hourly</td>
</tr>
</tbody>
</table>

a. Paediatric doses should not exceed the max of normal adult dose.
b. Vancomycin: aim for serum trough level of 10-15 mg/l.
c. Vancomycin dose should be adjusted in patients with renal impairment. Refer Appendices 8 and 9 for dosing recommendations.
d. For patients on gentamicin:
 - Monitor gentamicin level and renal function weekly. There should be a low threshold for stopping gentamicin in patients with deteriorating renal function or other signs of toxicity.
 - When given in a single daily dose give infusion over 30 minutes. Aim for pre-dose (trough) serum level of < 1 mg/l.
 - Consider biweekly clinical screening for ototoxicity:
 - Check baseline visual acuity using a Snellen pocket card.
 - To screen for ototoxicity, have patient shake head and reread the card.
 - Consider formal audiology test if patient loses 2 lines of visual acuity.
Recommendations

For antimicrobials in *Streptococcus viridans* infection:

1. For penicillin susceptible (MIC \(\leq 0.125 \, \mu g/ml \)) *Streptococcus viridans*, monotherapy with benzyl penicillin, ampicillin or ceftriaxone is adequate. [IIa/B] Duration of therapy is for 4 weeks for NVE and 6 weeks for prosthetic valve endocarditis (PVE). [IIa/C]

2. For penicillin relatively resistant (MIC > 0.125 to 2 \(\mu g/ml \)) *Streptococcus viridans*, gentamicin has to be added to the regime. [IIa/B] Duration of gentamicin is for 2 weeks for NVE and 6 weeks for PVE. [IIa/C]
4.2.2.2 Nutritionally variant streptococci

Table 4.4: *Abiotrophia defective* and *Granulicatella* species (both formerly known as nutritionally variant streptococci; NVS)*99, 100*

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Dosage and route</th>
<th>Duration of therapy (weeks)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin OR Benzyl penicillin</td>
<td>2 g IV 4 hourly</td>
<td>300 mg/kg/day IV in 4-6 equally divided doses</td>
<td>Follow susceptibility test results, if available</td>
</tr>
<tr>
<td>(Crystalline penicillin) PLUS</td>
<td>4 MU** IV 4 hourly or 24 MU/day as a continuous infusion. **MU = megaunit; 600 mg = 1 MU</td>
<td>300,000 units/kg/day IV in 4-6 equally divided doses</td>
<td></td>
</tr>
<tr>
<td>(Low dose) Gentamicin^d</td>
<td>1 mg/kg IV 8 hourly</td>
<td>1 mg/kg IV 8 hourly</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Ceftriaxone PLUS (Low dose) Gentamicin^d</td>
<td>2 g IV once daily</td>
<td>100 mg/kg/day IV in 1-2 equally divided doses (maximum 4 g/day)</td>
<td>Ceftriaxone is preferred if clinically not responding with penicillin</td>
</tr>
<tr>
<td></td>
<td>1 mg/kg IV 8 hourly</td>
<td>1 mg/kg IV 8 hourly</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Vancomycin^bc</td>
<td>15-20 mg/kg/dose (actual body weight) IV every 8-12 hourly; not to exceed 2 g/dose</td>
<td>40 mg/kg/day IV in 2-3 equally divided doses (maximum 2g/day)</td>
<td>Vancomycin therapy is recommended only for patients with immediate-type penicillin hypersensitivity</td>
</tr>
</tbody>
</table>

99, 100
For antimicrobials in NVS infection:
NVS are fastidious and slow growing making it technically difficult to determine antimicrobial susceptibility. Combination treatment of penicillin, ampicillin or ceftriaxone with gentamicin for at least the first 2 weeks, followed by continuation of chosen antimicrobial without gentamicin for 6 weeks is recommended. [II/B]

Recommendations

4.0 MANAGEMENT

a. Paediatric doses should not exceed the max of normal adult dose.
b. Vancomycin: aim for serum trough level of 10-15 mg/l.
c. Vancomycin dose should be adjusted in patients with renal impairment. Refer Appendices 8 and 9 for dosing recommendations.
d. For patients on gentamicin:
 • Monitor gentamicin level and renal function weekly. There should be a low threshold for stopping gentamicin in patients with deteriorating renal function or other signs of toxicity.
 • Aim for pre-dose (through) serum level of < 1 mg/l.
 • Consider biweekly clinical screening for ototoxicity:
 > Check baseline visual acuity using a Snellen pocket card.
 > To screen for ototoxicity, have patient shake head and reread the card.
 > Consider formal audiology test if patient loses 2 lines of visual acuity.
4.0 MANAGEMENT

4.2.2.3 Staphylococcus aureus and Coagulase-negative staphylococcus (CoNS)

Table 4.5: Native valve endocarditis due to S. aureus (right-sided)

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Dosage and route</th>
<th>Duration of therapy (weeks)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methicillin-susceptible staphylococci (MSSA) – left-sided</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloxacillin</td>
<td>12 g/day IV in 4-6 equally divided doses</td>
<td>200-300 mg/kg/day IV in 4-6 equally divided doses</td>
<td>4-6</td>
</tr>
<tr>
<td>Methicillin-susceptible staphylococci (MSSA) – right-sided; tricuspid valve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloxacillin</td>
<td>12 g/day IV in 4-6 equally divided doses</td>
<td>200-300 mg/kg/day IV in 4-6 equally divided doses</td>
<td>2-4; see comments</td>
</tr>
</tbody>
</table>

2 weeks regime is sufficient provided the patient fulfils all the following criteria:
- MSSA
- Good response to treatment
- Absence of metastatic sites of infection or empyema
- Absence of cardiac and extracardiac complications
- Absence of associated prosthetic valve or left-sided valve infection
- < 20 mm vegetation
- Absence of severe immuno-suppression (< 200 CD4 cells/ml) with or without acquired immune deficiency syndrome (AIDS)
4.0 MANAGEMENT

Antimicrobial Dosage and route Duration of therapy (weeks) Comments

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Dosage and route</th>
<th>Duration of therapy (weeks)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regimens for β-lactam allergic patients – both left-sided and right-sided</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefazolin</td>
<td>2 g IV 8 hourly</td>
<td>100 mg/kg/day IV in 3 equally divided doses</td>
<td>4-6</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>15-20 mg/kg/dose (actual body weight) IV every 8-12 hourly; not to exceed 2 g/dose</td>
<td>60 mg/kg/day IV in 2-3 equally divided doses (maximum 2 g/day unless unable to achieve therapeutic range)</td>
<td>4-6</td>
</tr>
<tr>
<td>Daptomycin</td>
<td>10 mg/kg IV daily</td>
<td>10 mg/kg IV daily</td>
<td>4-6</td>
</tr>
</tbody>
</table>

Methicillin-Resistant Staphylococci (MRSA) – left-sided and right-sided

| **Vancomycin** | 15-20 mg/kg/dose (actual body weight) IV every 8-12 hourly; not to exceed 2 g/dose | 60 mg/kg/day IV in 2-3 equally divided doses (maximum 2 g/day unless unable to achieve therapeutic range) | 4-6 | Loading dose of 25-30 mg/kg (actual body weight) may be considered for seriously ill patients |
Table 4.6: Staphylococcal endocarditis in the presence of a prosthetic valve or other prosthetic material

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Dosage and route</th>
<th>Duration of therapy (weeks)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methicillin-susceptible staphylococci (MSSA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloxacillin</td>
<td>2 g IV 4 hourly</td>
<td>200-300 mg/kg/day IV in 4-6 equally divided doses</td>
<td>≥ 6</td>
</tr>
<tr>
<td>PLUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rifampicin</td>
<td>300-450 mg PO 12 hourly**</td>
<td></td>
<td>Immediate-type hypersensitivity to penicillin use vancomycin</td>
</tr>
<tr>
<td>PLUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicind (Low dose)</td>
<td>1 mg/kg IV 8 hourly</td>
<td></td>
<td>**Rifampicin has better penetration. However to avoid the development of resistance, it should be started after 3-5 days of effective initial cloxacillin therapy and/or once the bacteraemia has been cleared.</td>
</tr>
<tr>
<td>Methicillin-Resistant Staphylococci (MRSA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vancomycinb,c</td>
<td>15-20 mg/kg/dose (actual body weight) IV every 8-12 hourly; not to exceed 2 g/dose</td>
<td>60 mg/kg/day IV in 2-3 equally divided doses (maximum 2 g/day unless unable to achieve therapeutic range)</td>
<td>≥ 6</td>
</tr>
<tr>
<td>PLUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rifampicin</td>
<td>300-450 mg PO 12 hourly**</td>
<td></td>
<td>For adults, loading dose of 25-30 mg/kg (actual body weight) may be considered for seriously ill patients.</td>
</tr>
<tr>
<td>PLUS</td>
<td></td>
<td></td>
<td>**Rifampicin has better penetration. However to avoid the development of resistance, it should be started after 3-5 days of effective initial vancomycin therapy and/or once the bacteraemia has been cleared.</td>
</tr>
<tr>
<td>Gentamicind (Low dose)</td>
<td>1 mg/kg IV 8 hourly</td>
<td></td>
<td>**Rifampicin has better penetration. However to avoid the development of resistance, it should be started after 3-5 days of effective initial vancomycin therapy and/or once the bacteraemia has been cleared.</td>
</tr>
</tbody>
</table>
a. Paediatric doses should not exceed the max of normal adult dose.
b. Vancomycin: aim for serum trough level of 15-20 mg/l.
c. Vancomycin dose should be adjusted in patients with renal impairment. Refer Appendices 8 and 9 for dosing recommendations.
d. For patients on gentamicin:
 • Monitor gentamicin level and renal function weekly. There should be a low threshold for stopping gentamicin in patients with deteriorating renal function or other signs of toxicity.
 • Aim for pre-dose (trough) serum level of < 1 mg/l.
 • Consider biweekly clinical screening for ototoxicity:
 > Check baseline visual acuity using a Snellen pocket card.
 > To screen for ototoxicity, have patient shake head and reread the card.
 > Consider formal audiology test if patient loses 2 lines of visual acuity.

Recommendations

For antimicrobials in *S. aureus* and CoNS infections:

1. Addition of gentamicin for native valve staphylococcus endocarditis is not recommended. [III/B]
2. Addition of gentamicin and rifampicin is recommended for PVE. [I/C]
4.0 MANAGEMENT

4.2.2.4 *Enterococcus* species

Table 4.7: Endocarditis due to *enterococcus*-native and prosthetic valve

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Dosage and route</th>
<th>Duration of therapy (weeks)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully penicillin-susceptible strains (penicillin MIC ≤ 8 mg/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampicillin PLUS (Low dose) Gentamicind</td>
<td>2 g IV 4 hourly</td>
<td>200-300 mg/kg/day IV in 4-6 equally divided doses</td>
<td>4 or 6 depending on duration of symptoms and type of valve; see comments</td>
</tr>
<tr>
<td></td>
<td>1 mg/kg IV 8 hourly</td>
<td>1 mg/kg IV 8 hourly</td>
<td>2 or 6 depending on duration of symptoms and type of valve; see comments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampicillin PLUS Ceftriaxone</td>
<td>2 g IV 4 hourly</td>
<td>200-300 mg/kg/day IV in 4-6 equally divided doses</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2 g IV 12 hourly</td>
<td>100 mg/kg/day IV in 1-2 equally divided doses (maximum 4 g/day)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.0 MANAGEMENT

Antimicrobial Dosage and route

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Dosage and route</th>
<th>Duration of therapy (weeks)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitive to penicillin and vancomycin but high level resistance to gentamicin (MIC > 500 mg/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampicillin</td>
<td>2 g IV 4 hourly</td>
<td>300 mg/kg/day IV in 4-6 equally divided doses</td>
<td>6</td>
</tr>
<tr>
<td>PLUS</td>
<td>2 g IV 12 hourly</td>
<td>100 mg/kg/day IV in 1-2 equally divided doses (maximum 4 g/day)</td>
<td></td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>(Low dose)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistant to penicillin and susceptible to aminoglycosides and vancomycin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vancomycin</td>
<td>15-20 mg/kg/dose (actual body weight) IV every 8-12 hourly; not to exceed 2 g/dose</td>
<td>40 mg/kg/day IV in 3 divided doses (maximum 2 g/day unless unable to achieve therapeutic range)</td>
<td>6</td>
</tr>
<tr>
<td>PLUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Low dose) Gentamicin</td>
<td>1 mg/kg IV 8 hourly</td>
<td>1 mg/kg IV 8 hourly</td>
<td>6</td>
</tr>
</tbody>
</table>

a. Paediatric doses should not exceed the max of normal adult dose.

b. Vancomycin: aim for serum trough level of 10-20 mg/l.

c. Vancomycin dose should be adjusted in patients with renal impairment. Refer Appendices 8 and 9 for dosing recommendations.

d. For patients on gentamicin:

- Monitor gentamicin level and renal function weekly. There should be a low threshold for stopping gentamicin in patients with deteriorating renal function or other signs of toxicity.
- Aim for pre-dose (trough) serum level of < 1 mg/l.
- Consider biweekly clinical screening for ototoxicity:
 - Check baseline visual acuity using a Snellen pocket card.
 - To screen for ototoxicity, have patient shake head and reread the card.
 - Consider formal audiology test if patient loses 2 lines of visual acuity.
Recommendations

For antimicrobials in *enterococcus* infection:

1. In native valve *enterococcus* endocarditis, the duration of ampicillin and gentamicin is dependent on the duration of symptoms before treatment initiation. [IIa/C]

2. Combination therapy with ceftriaxone and ampicillin is recommended for patients with gentamicin high-level resistance, the elderly and those with renal impairment. [IIa/B]
4.2.2.5 HACEK microorganisms

Table 4.8: Therapy for endocarditis due to HACEK microorganisms (Haemophilus parainfluenza, Aggregatibacter aphrophilus, Aggregatibacter actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens and Kingella kingae) both native and prosthetic valve

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Dosage and route</th>
<th>Duration of therapy (weeks)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adult</td>
<td>Paediatric</td>
<td></td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>2 g IV once daily</td>
<td>100 mg/kg/day IV in 1-2 equally divided doses (maximum 4 g/day)</td>
<td>HACEK-group bacilli produce beta-lactamases; definitive treatment should be adjusted based on the cultures</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampicillin + Sulbactam</td>
<td>3 g IV 6 hourly</td>
<td>200-300 mg/kg/day IV in 4-6 equally divided doses (ampicillin component)</td>
<td>May be an option if isolate is susceptible</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>400 mg IV 12 hourly or 500 mg PO 12 hourly</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommendations

For antimicrobials in HACEK group of microorganism infection:

1. Ceftriaxone monotherapy is recommended for endocarditis due to HACEK microorganisms. [IIa/B]
2. Alternative drugs such as ampicillin/sulbactam or ciprofloxacin may be used provided the isolate is susceptible. [IIa/C]
4.0 Management

4.2.2.6 Candida

Table 4.9: Therapy for *Candida* endocarditis (native and prosthetic valve)\(^{107}\)

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Dosage and route</th>
<th>Duration of therapy (weeks)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphotericin B deoxycholate</td>
<td>0.6-1.0 mg/kg IV once daily</td>
<td>At least 6 weeks after surgery</td>
<td>Step down therapy: fluconazole 400-800 mg (6-12 mg/kg) orally daily for susceptible microorganism in stable patients with negative blood cultures (clearance of Candida from blood stream)</td>
</tr>
<tr>
<td>OR</td>
<td>3-5 mg/kg IV once daily</td>
<td></td>
<td>For synergistic effect Causes dose related marrow toxicity Avoid using in patients with renal failure</td>
</tr>
<tr>
<td>Lipid formulation Amphotericin B</td>
<td>25 mg/kg PO 6 hourly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with or without Flucytosine</td>
<td>100-150 mg/kg PO in 4 equally divided doses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micafungin</td>
<td>150 mg IV daily</td>
<td>At least 6 weeks after surgery</td>
<td>Step down therapy: fluconazole 400-800 mg (6-12 mg/kg) orally daily for susceptible microorganism in stable patients with negative blood cultures (clearance of Candida from blood stream)</td>
</tr>
<tr>
<td>Caspofungin</td>
<td>150 mg IV daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anidulafungin</td>
<td>200 mg IV daily</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Valve replacement is mandatory. Continue therapy for 6 weeks after replacement or longer in patient with perivalvular abscess.
- The duration of therapy will depend on patient response and surgical intervention.
- For patients who cannot undergo valve replacement, long-term suppression with fluconazole at a dosage of 400-800 mg (6-12 mg/kg) daily is recommended.
- For PVE, the recommendations above apply, and suppressive therapy should be lifelong if valve replacement is not possible.

Recommendations

For management of *Candida* infection:

Valve surgery combined with antifungal therapy is required for adequate treatment of *Candida* endocarditis. [I/B]
4.0 MANAGEMENT

4.2.2.7 Non-HACEK Gram-negative microorganisms

This includes microorganisms such as *Pseudomonas aeruginosa*, *Escherichia coli* and *Salmonella*. The choice of antimicrobials for these microorganisms depends on antimicrobial susceptibility pattern. Commonly combination therapy with β-lactam (column A) and aminoglycosides or fluoroquinolones (column B) are used (refer Table 4.10). Medical therapy often needs to be combined with cardiac surgery. The duration of therapy is 6 weeks.

Table 4.10: Antimicrobial choices for pseudomonas endocarditis (6 weeks duration) in adults^a

<table>
<thead>
<tr>
<th>Column A</th>
<th>Column B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti Pseudomonal β-lactams</td>
<td>Aminoglycosides</td>
</tr>
<tr>
<td>Ceftazidime 2 g IV 8 hourly</td>
<td>Gentamicin 5-7 mg/kg IV daily</td>
</tr>
<tr>
<td>Cefepime 2 g IV 8 hourly</td>
<td>Amikacin 15 mg/kg IV daily</td>
</tr>
<tr>
<td>Piperacillin-tazobactam 4.5 g IV 6 hourly</td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>Flouroquinolones</td>
</tr>
<tr>
<td></td>
<td>Ciprofloxacin 400 mg IV 8 hourly</td>
</tr>
<tr>
<td></td>
<td>Levofloxacin 750 mg IV daily</td>
</tr>
</tbody>
</table>

Flouroquinolones can be switched to appropriate oral dose if patient can tolerate oral medications.

^aAs there are very limited data on treating these infections in the paediatric population, a Paediatric ID specialist consult is recommended for an appropriate treatment plan.

Adapted from Reyes MP, et al. Medicine (Baltimore). 2009.108

Recommendations

For antimicrobials in non-HACEK group of microorganism infections:

In non-HACEK Gram-negative IE a combination therapy with a β-lactam and aminoglycoside or fluoroquinolone are used. [IIa/C]
4.2.2.8 Other microorganisms

Table 4.11: Therapy for other microorganisms (adults)**

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Antimicrobial</th>
<th>Dosage and route</th>
<th>Duration of therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brucella spp.</td>
<td>Doxycycline</td>
<td>100 mg PO 12 hourly</td>
<td>3-6 months</td>
</tr>
<tr>
<td>PLUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rifampicin</td>
<td></td>
<td>300-600 mg PO daily</td>
<td></td>
</tr>
<tr>
<td>ADD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptomycin (For first 2-3 weeks only)</td>
<td>1 g IM daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td>5 mg/kg IV daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. burnetii (agent of Q fever)**</td>
<td>Doxycycline</td>
<td>100 mg PO 12 hourly</td>
<td>18-24 months based on clinical and serological response</td>
</tr>
<tr>
<td>PLUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroxychloroquine</td>
<td>600 mg PO daily or 200 mg PO 8 hourly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bartonella spp.</td>
<td>Doxycycline</td>
<td>100 mg PO 12 hourly</td>
<td>2 weeks</td>
</tr>
<tr>
<td>PLUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td>3 mg/kg IV daily</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**As there are very limited data on treating these infections in the paediatric population, a Paediatric ID specialist consult is recommended for an appropriate treatment plan.
4.2.3 Empirical therapy

The initial empirical regime for endocarditis will depend on the following factors (refer Figure 4a):

- Involvement of native or prosthetic valves.
- Duration following prosthetic surgery; early vs. late PVE (refer Appendix 1).
- Community acquired or healthcare associated (refer Appendix 1).
- Presence of risk factors for multidrug resistant microorganisms e.g. previous antimicrobial use or colonisations (extended-spectrum β-lactamases; ESBL producing microorganisms, *Pseudomonas* and MRSA).
- Risk factors/clinical clues for fastidious or intracellular pathogens (refer Table 3.2).
- Acute or subacute presentation.

Patients with subacute presentation are more likely to be infected with less virulent microorganisms such as VGS, enterococci, HACEK Gram-negative or NVS.

Patients may present acutely due to:

- Infection with more virulent microorganisms such *S. aureus* and non-HACEK Gram-negatives.
- Infection with less-virulent microorganisms such as VGS, enterococci and HACEK Gram-negatives due to prolonged illness or immunocompromised status.
Figure 4a: Antimicrobial coverage required for initial empirical treatment

Suspected or confirmed IE

Native valve

Prosthetic valve

Early
(< 12 months)

Late
(> 12 months)

Community acquired

Healthcare associated (nosocomial/non-nosocomial)

MRSA
Enterococci
Non-HACEK Gram-negative microorganisms

Subacute presentation:
Streptococcus
Enterococcus
HACEK Gram-negative organisms

Acute presentation:
The above and to cover MSSA

4.0 MANAGEMENT
Proposed antimicrobial regimens for initial empirical treatment of infective endocarditis (before pathogen identification) are presented in the table below.

Table 4.12: Therapy for initial empirical treatment of IE in acute severely ill patients

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Dosage and route</th>
<th>Duration of therapy (weeks)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community-acquired native valves or late prosthetic valves (≥ 12 months post-surgery) endocarditis</td>
<td></td>
<td></td>
<td>For patients with suspected S. aureus infections (such as IVDU or patients with prosthesis) and acute presentation</td>
</tr>
<tr>
<td>Ampicillin PLUS (Low dose) Gentamicin**</td>
<td>12 g/day IV in 4-6 equally divided doses</td>
<td>200-300 mg/kg/day IV in 4-6 equally divided doses</td>
<td>For patients who are allergic to β-lactam antimicrobials</td>
</tr>
<tr>
<td></td>
<td>3 mg/kg/day IV once daily</td>
<td>1 mg/kg IV 8 hourly</td>
<td></td>
</tr>
<tr>
<td>PLUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloxacillin</td>
<td>12 g/day IV in 4-6 equally divided doses</td>
<td>200 mg/kg/day IV in 4-6 equally divided doses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 mg/kg/day IV once daily</td>
<td>1 mg/kg IV 8 hourly</td>
<td></td>
</tr>
<tr>
<td>Vancomycin PLUS (Low dose) Gentamicin**</td>
<td>15-20 mg/kg dose (actual body weight) IV every 8-12 hourly; not to exceed 2 g/dose</td>
<td>40 mg/kg/day IV in 2-3 equally divided doses (maximum 2g/day unless unable to achieve therapeutic range)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 mg/kg/day IV once daily</td>
<td>1 mg/kg IV 8 hourly</td>
<td></td>
</tr>
<tr>
<td>Antimicrobial</td>
<td>Dosage and route</td>
<td>Duration of therapy (weeks)</td>
<td>Comments</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>15-20 mg/kg/dose (actual body weight) IV every 8-12 hourly; not to exceed 2 g/dose</td>
<td>60 mg/kg/day IV in 2-3 equally divided doses (maximum 2g/day unless unable to achieve therapeutic range)</td>
<td>Rifampicin is only recommended for PVE and it should be started 3-5 days later than vancomycin and gentamicin</td>
</tr>
<tr>
<td>PLUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Low dose) Gentamicin</td>
<td>3 mg/kg/day IV once daily</td>
<td>1 mg/kg IV 8 hourly</td>
<td>^Cefepime is indicated if local epidemiology suggests for non-HACEK Gram- negative rod infections (such as Pseudomonas)</td>
</tr>
<tr>
<td>PLUS/MINUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rifampicin**</td>
<td>300-450 mg PO 12 hourly</td>
<td>20 mg/kg/day divided every 8 hourly (maximum dose: 900 mg/day)</td>
<td></td>
</tr>
<tr>
<td>PLUS/MINUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefepime^</td>
<td>2 g IV 8 hourly</td>
<td>50 mg/kg IV 8 hourly</td>
<td></td>
</tr>
</tbody>
</table>

a. Paediatric doses should not exceed the max of normal adult dose.
b. Vancomycin: aim for serum trough level of 15-20 mg/l.
c. Vancomycin dose should be adjusted in patients with renal impairment. Refer Appendices 8 and 9 for dosing guide.
d. For patients on gentamicin:
 - Monitor gentamicin level and renal function weekly. There should be a low threshold for stopping gentamicin in patients with deteriorating renal function or other signs of toxicity.
 - Aim for pre-dose (trough) serum level of < 1 mg/l.
 - Consider biweekly clinical screening for otoxicity:
 > Check baseline visual acuity using a Snellen pocket card.
 > To screen for otoxicity, have patient shake head and reread the card.
 > Consider formal audiology test if patient loses 2 lines of visual acuity.

4.2.3.1 Empirical antimicrobial therapy for infective endocarditis in intravenous drug users

S. aureus is the most common cause of IE among IVDUs. However fungal and Gram-negative bacilli such as *Pseudomonas aeruginosa* can also cause IE in this population. Tricuspid valve involvement is the most common. Septic pulmonary emboli and pneumonia are common complications of tricuspid valve involvement and does not alter the duration of treatment (refer Section 4.2.2.3; Table 4.5 & 4.6).
4.2.4 Outpatient parenteral antimicrobial therapy for infective endocarditis

In carefully selected patients, outpatient parenteral antimicrobial therapy (OPAT) can be a safe and effective means of completing therapy for IE. Patients require minimum 2 weeks of inpatient therapy before being considered for OPAT. Beyond 2 weeks of treatment consider OPAT service if patient is:

- Medically stable.
- Has no heart failure.
- Has no neurological signs.
- Has no renal impairment.
- Has no high-risk cardiac features on echocardiogram (refer Section 3.3.1; Table 3.4).

The hospital must have established OPAT services with trained staff and protocols. Patients need to be reviewed daily by a trained nurse and by a doctor once/twice a week. Some important parameters that should be reviewed are presented in Appendix 10.
5.0 SURGICAL INTERVENTION

5.1 Indications

Surgical intervention is indicated in the following cases of IE:

- Severe valvular incompetence, haemodynamic instability or heart failure.
- Uncontrolled sepsis and paravalvular extension of infection.
- Fungal or multiresistant endocarditis.
- Large vegetations (> 10 mm for left-sided IE) and recurrent systemic embolisation.

A. Severe valvular incompetence, heart failure or haemodynamic instability

Valvular regurgitation in NVE occurs as a result of:

- Leaflet perforation.
- Rupture of the leaflet supporting apparatus.
- Interference of the vegetative mass with leaflet closure.
- Intracardiac and extracardiac fistulas.
- Valve obstruction of prosthetic valves by very large vegetations (rare).

When acute and severe, heart failure and haemodynamic instability ensues. Surgery in these situations is life saving and has been shown to improve survival.

B. Persistent infection, uncontrolled sepsis and paravalvular extension of infection

Surgery is indicated when:

- Fever or positive blood cultures persist despite appropriate antimicrobial treatment after 5-7 days.
- Extracardiac causes have been excluded.

Paravalvular extension of IE is the most frequent cause of uncontrolled infection and is associated with a poor prognosis. Most of these patients undergo surgery with a very high hospital mortality of up to 41%.
Abscesses are more common in native aortic valve endocarditis compared to mitral or tricuspid valve endocarditis and typically occur in the weakest part of the annulus near the membranous septum and AV node. The heart blocks are therefore a sign of abscess formation. Acute coronary syndromes can also occur. Abscesses are more common in PVE as the annulus rather than the prosthetic valve is usually the primary source of the infection. These abscesses may progress to fistulous tracts creating intracardiac or pericardial shunts.

C. Fungal or multiresistant endocarditis
Surgery is indicated in IE caused by the following microorganisms/infection:

- Fungal IE:
 - Responds poorly to medical treatment.
 - Reported mortality of up to 70%. Even with surgery, survival remains poor.
- Multiresistant microorganisms.
- Non-HACEK Gram-negative bacteria.
- *S. aureus* infection, if a favourable early response to antimicrobials is not achieved.

D. Very large vegetations (> 10 mm) or previous systemic embolism
Surgery should be considered for vegetations > 10 mm in size particularly when other risk factors for embolisation are present. These include:

- Mobile vegetation.
- Increase in vegetation size despite treatment.
- Vegetation on the mitral valve (particularly the anterior leaflet).
- *S. aureus*, fungal and HACEK endocarditis.
- Previous systemic embolism.

Recommendations

Surgical intervention in IE is indicated for:

1. Severe valvular incompetence, heart failure or haemodynamic instability. [I/B]
2. Persistent infection, uncontrolled sepsis or paravalvular extension of infection. [I/B]
3. Fungal or multiresistant endocarditis. [I/B]
4. Very large vegetations (> 10 mm) or previous systemic embolism. [I/B]
5.2 Timing of surgery

In general, when there is an established indication for surgery as discussed in Section 5.1 above, surgical intervention should be undertaken as soon as practically possible after completion of surgical workup.

Early surgical intervention in these patients:

- Improves survival.113,122,123
- Prevents the risk of progressive heart failure, cardiogenic shock and multiorgan failure.124
- Decreases the progression of infection causing further structural damage with abscess formation.
- Reduces systemic embolism of the vegetations.116
- Increases the likelihood of valve repair rather than replacement due to lesser destruction of the native valve.125

The improved results with early surgery is seen in those with heart failure or paravalvular complications. However in practice, surgery is often delayed in endocarditis due to:

- High operative risk.
- Possible risk of the newly implanted prosthetic valve getting infected.

A recent meta-analysis involving 8,141 patients demonstrated that early surgery within 2 weeks of diagnosis improved both early mortality and long-term survival compared with non-early surgery.126 In patients with cardiogenic shock, surgery should be undertaken much earlier, within 24 hours of diagnosis.127 However, it may be reasonable to delay surgery for 48 hours in a patient with septic shock to allow a period of stabilisation and better control of the sepsis with intravenous antimicrobials as cardiac surgery with cardiopulmonary bypass in the presence of septic shock carries an excessively high operative mortality.125,127

In selected patients, surgery can be carried out on an elective or semi-elective basis in the subacute or healed phase of endocarditis where the operative risk and the risk of infection of the implanted valve prosthesis is lower.68,128 This is applicable for the following patients:

- Pre-existing chronic valvular regurgitation who are haemodynamically stable.
- Vegetation is < 10 mm in size.
- Well-controlled sepsis.
A multidisciplinary team approach, comprising cardiologists, cardiac surgeons and ID specialists is recommended when deciding on the indication and optimal timing for surgical intervention. This approach has lowered overall morbidity and mortality for IE. Patients with an indication for surgical intervention should be transferred to a SC at the earliest opportunity where such a multidisciplinary approach can be offered.

5.2.1 Preventing systemic embolism

Most emboli occur before the diagnosis of endocarditis and in the first 2 weeks thereafter; the embolic rate decreases significantly after 2-3 weeks of antimicrobial therapy. There is emerging evidence for urgent surgery in preventing embolic events in those with large vegetations > 10 mm.

A randomised controlled trial of 76 patients with left-sided NVE comparing early versus late surgery in IE with large vegetations (> 10 mm) reported a lower composite rate of hospital deaths, embolic events and recurrent endocarditis at 6 months with early surgery within 48 hours (3% versus 23%). The difference was largely due to a reduction in embolic events with early surgery.

Surgery undertaken for the prevention of systemic embolism should be performed urgently during the first few days following initiation of antimicrobial therapy, as the risk of embolism is highest at this time.

Recommendations

<table>
<thead>
<tr>
<th>Timing of surgery</th>
<th>Clinical condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>The timing of surgical intervention in IE patients depends on the clinical condition of the patient.</td>
<td></td>
</tr>
<tr>
<td>Emergency (within 24 hours)</td>
<td>Cardiogenic shock from severe valve dysfunction. [I/C]</td>
</tr>
<tr>
<td>Urgent (within 3-4 days)</td>
<td>Pulmonary oedema but not in cardiogenic shock. [I/B]</td>
</tr>
<tr>
<td></td>
<td>Very large vegetations (> 10 mm). [I/B]</td>
</tr>
<tr>
<td></td>
<td>Paravascular abscess or heart block. [I/C]</td>
</tr>
<tr>
<td>Early (within 1-2 weeks)</td>
<td>Fungal, S. aureus or other highly resistant microorganisms. [I/C]</td>
</tr>
<tr>
<td></td>
<td>Persistent infection. [Ia/B]</td>
</tr>
<tr>
<td></td>
<td>Persistent or enlarging vegetations despite antimicrobials. [Ila/B]</td>
</tr>
<tr>
<td></td>
<td>Recurrent emboli. [I/B]</td>
</tr>
<tr>
<td>Semi-elective (after 2 weeks of antimicrobial cover)</td>
<td>PVE and relapsing infection. [I/B]</td>
</tr>
<tr>
<td>Elective (after 6 weeks of antimicrobial therapy)</td>
<td>Well-tolerated chronic severe valvular regurgitation with controlled infection. [I/C]</td>
</tr>
</tbody>
</table>
5.3 Surgery in specific conditions

5.3.1 Cerebral infarction or haemorrhage

Up to 80% of patients with left-sided endocarditis have cerebral embolism detected by MRI. However, the majority of these are subclinical and clinical stroke is diagnosed in only 25-29%.48,131

The risk of significant neurologic complications occurring as a result of cardiac surgery performed early after a significant cerebral infarction is high:

- Approximately 20% in the first 3 days.
- 20-50% between 4 and 14 days.
- 6-10% between 15 and 28 days.
- < 1% after 28 days.

Hospital mortality is also dependent on the time of cardiac surgical intervention after a cerebral infarction; 66% when surgery is performed within 24 hours of a stroke, and gradually decreasing every week to 7% when surgery is performed more than 4 weeks after a stroke.132 The risk of clinical deterioration is independently associated with stroke severity.

The recommended timing for valve surgery\textit{if indicated}, following a cerebrovascular event is as follows:

- Without delay:
 - In the presence of subclinical cerebral emboli or small cerebral infarcts without severe neurological damage.
 - Absence of cerebral haemorrhage.

- Delayed for at least 2 weeks:
 - In the presence of major ischaemic strokes, if more urgent surgery is indicated e.g. due to congestive heart failure, progressive decline in cardiac function or uncontrolled infection.
 - Absence of cerebral haemorrhage.
 - Areas of brain infarction are small.
• Delayed for at least 4 weeks:
 > In the presence of major ischaemic strokes.
 > In the presence of major intracranial haemorrhage (> 2 cm in diameter):
 » This reduces the risk of cerebral haemorrhage during cardiac surgery on cardiopulmonary bypass with systemic heparinisation.79
 » In one study, hospital mortality was 75\% when performed within 4 weeks of a haemorrhagic stroke compared to 40\% when surgery was performed after 4 weeks.80

\textbf{Recommendations}

\textbf{Surgical indication for patients with cerebral infarction or haemorrhage:}

1. In the presence of subclinical cerebral emboli or infarcts without haemorrhage, surgery can be undertaken without delay when indicated. [IIb/B]
2. In the presence of major ischaemic strokes or intracranial haemorrhage, surgery may be delayed for at least 4 weeks. [IIa/B]
3. In the presence of major ischaemic strokes without coma or intracranial haemorrhage, surgery can be performed after 2 weeks if urgent surgery is indicated e.g. due to congestive heart failure, deteriorating cardiac function or uncontrolled infection. [IIa/B]
5.0 SURGICAL INTERVENTION

5.3.2 Right-sided endocarditis

Right-sided IE accounts for 5-10% of all cases of IE mostly involving the tricuspid valve, while isolated pulmonary valve involvement is rare. Right-sided IE resolves with conservative treatment in most cases and surgery is not commonly performed. The insertion of a prosthetic valve is generally avoided as much as possible in these cases as the majority of these patients are IVDUs and the risk of subsequent infection of an implanted valve prosthesis is high with continued intravenous drug use.

5.3.2.1 Indications for surgery

Surgery is indicated in the following situations:

- Persistent infection due to difficult to eradicate microorganisms not responding to antimicrobial therapy beyond 2 weeks.133
- Persistent vegetation size > 20 mm and recurrent septic pulmonary emboli despite appropriate antimicrobials.134,135
- Massive or worsening tricuspid regurgitation causing right heart failure unresponsive to medical therapy.
- Failure or complications of percutaneous removal of infected pacing wires.

\textit{S.aureus} infections are often complicated with large vegetations, aggressive valve destruction and embolic manifestations resulting in an increased risk of mortality. In a recent meta-analysis, medical therapy of staphylococcal endocarditis was associated with higher mortality than combined medical/surgical therapy especially if multiresistant type of microorganism is present.

\begin{tcolorbox}[colframe=olive!50!olive!50!olive!50!olive!50]
\textbf{Recommendations}

\textbf{Surgical indication for right-sided IE:}

1. Persistent infection despite 2 weeks of appropriate antimicrobial therapy. [IIa/C]
2. Persistent vegetation size > 20 mm and recurrent septic pulmonary emboli despite appropriate antimicrobials. [IIa/C]
3. Massive or worsening tricuspid regurgitation causing right heart failure unresponsive to medical therapy. [IIa/C]
4. Failure or complications of percutaneous removal of infected pacing wires. [IIa/C]
\end{tcolorbox}
5.0 SURGICAL INTERVENTION

5.3.3 Prosthetic valve endocarditis

In addition to the indications for surgery in NVE mentioned above, surgery in PVE is also recommended for:

- Staphylococcal endocarditis.
- Severe prosthetic valve dysfunction or dehiscence.

Only about half of patients with PVE undergo surgery, more commonly in those with early PVE i.e. occurring in the first year after valve surgery. The risk of recurrent PVE after surgery for PVE is significant and further surgery is required in up to 18% of these patients.\(^\text{136,137}\)

Most patients treated conservatively have uncomplicated non-staphylococcal and non-fungal late PVE. However, these patients require careful follow-up because of the risk of late events.\(^\text{138}\) Unlike in NVE, early surgery in PVE has not been shown to improve survival except in those with the highest risk.\(^\text{18,139}\)

Recommendations

Indications for surgery are:

1. As in NVE (refer Section 5.1).
2. Staphylococcal endocarditis. [I/C]
3. Severe prosthetic valve dysfunction or dehiscence. [I/C]

5.4 Principles of surgery

The surgical principles in IE are well established.

Pre-operative assessment and management would include:

- Investigating and treating the primary source responsible for the endocarditis.
- Treatment of extracardiac sepsis such as splenic and paravertebral abscesses either by splenectomy\(^\text{140}\) or percutaneous drainage to avoid infection of the new valve.
- Investigating and managing cerebrovascular events for those at risk.
- Dental consultation.

Pre-operative workup should therefore include imaging of the brain, chest, abdomen and pelvis, and maxillofacial area.
Some important surgical strategies are:

- Wherever possible valve repair rather than replacement is preferred. Valve repair:
 - Improves in-hospital and long-term survival.
 - Has better preservation of ventricular function.
 - Eliminates the risk of prosthetic valve-related complications compared with valve replacement.
 - Decreases the risk of infection of the newly implanted prosthetic valve.79,141

- Complete removal and radical debridement of all infected and necrotic material, leaving only healthy tissue, which will hold suture.
- To avoid excessive manipulation of the heart prior to going on cardiopulmonary bypass to prevent embolisation of the vegetations.
- Reconstruction using autologous or bovine pericardium, or dacron, if necessary, avoiding prosthetic material if possible.79,125,142
- Vegetations/cardiac tissue sent for Gram stain, cultures and for HPE (refer Sections 3.2.2 & 3.2.3, and Appendix 5).
- The choice of valve prosthesis type is based on the usual considerations when deciding between a mechanical or bioprosthetic valve i.e. age, life expectancy, co-morbidities and compliance with anticoagulation therapy. There is no difference in the risk of infection between mechanical or bioprosthetic valves.79,142,143
- Bioprosthetic valve replacement rather than mechanical valve replacement should be considered in the presence of mycotic cerebral aneurysms identified by imaging studies pre-operatively to avoid the need for anticoagulation post-operatively.
- Post-operative anticoagulation management should be reviewed and managed accordingly in those with cerebrovascular complications.
- Antimicrobials should be continued to complete a total course of 6 weeks in most cases.

\textbf{KEY MESSAGE:}

MRA of the brain may be considered before cardiac surgery in patients without neurological complications who are at high-risk of developing mycotic aneurysm to aid with the surgical strategy.
5.0 SURGICAL INTERVENTION

5.4.1 Aortic valve
Due to the increased risk of embolisation, CT guided coronary angiography instead of conventional catheter based coronary angiography is recommended to assess for the presence of perivalvular extensions.

In the presence of periannular abscess, it may be necessary to reconstruct the aortic annulus using autologous or bovine pericardium, or dacron. In most cases, it is possible to suture a valve prosthesis onto the reconstructed annulus.

An aortic root replacement with a homograft or stentless root is a good option when aortic root replacement is necessary.79,144

5.4.2 Mitral valve
Whenever possible, repair rather than replacement of destroyed mitral valves should be undertaken. Successful repair of the mitral valve in IE is often possible with the right expertise, which may require repair of the leaflet perforation or augmentation with pericardial patch and use of artificial neochordae.

However, complete and radical debridement of all infected tissue remains the key principle and should not be compromised to repair the mitral valve. If mitral valve replacement is necessary, complete preservation of the subvalvular apparatus should be performed.

5.4.3 Tricuspid valve
Whenever possible, repair rather than replacement of destroyed tricuspid valves is preferable. When valve repair is not possible and replacement is necessary, the choice of prosthesis should follow the same algorithm as in patients without endocarditis. In IVDUs, it may be reasonable to use a bioprosthetic valve if there is concern about compliance with anticoagulation medication.79

5.4.4 Periannular extension
Where abscess cavities are present, these must be drained, necrotic tissue excised and any fistulous tracts closed where appropriate. These patients often require temporary or permanent pacing.
Surgical principles in IE:
1. Complete removal and radical debridement of all infected and necrotic material, leaving only healthy tissue, which will hold suture, is recommended. [I/C]
2. Valve repair when possible is preferred rather than replacement. [IIa/C]
3. The choice of valve prosthesis type should be based on the standard considerations when deciding between a mechanical or bioprosthetic valve (e.g. age and childbearing females). [I/C]

5.5 Surgery for infective endocarditis in congenital heart disease

5.5.1 Indications for surgery
Although no paediatric specific surgical guidelines for acute IE exist, established American Heart Association (AHA) adult guidelines have been endorsed by the American Academy of Paediatrics (AAP).

The determinant factors of surgical therapy for active IE in the paediatric population are mentioned in Table 5.1.
Table 5.1: Determinant factors for surgical therapy

<table>
<thead>
<tr>
<th>Complications of IE</th>
<th>Vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Congestive cardiac failure</td>
<td>• Anterior valve vegetation</td>
</tr>
<tr>
<td>• Valvular complications such as progressive valve dysfunction, perivalvular extension (fistula and abscess) and valve perforations/rupture</td>
<td>• Vegetation size > 10 mm</td>
</tr>
<tr>
<td>• Persistent infection despite optimal antimicrobial therapy</td>
<td>• Increasing vegetation size despite 4 weeks of antimicrobials</td>
</tr>
<tr>
<td>• Unstable prosthesis</td>
<td>• Persistent vegetation after systemic embolisation</td>
</tr>
<tr>
<td>• History of embolisation depending on size and site of vegetation (refer Sections 5.1 & 5.2)</td>
<td>• Microorganisms</td>
</tr>
<tr>
<td>> 1 embolic event during 1st 2 weeks of antimicrobial therapy</td>
<td>> Fungal IE</td>
</tr>
<tr>
<td>> 2 embolic events during or after the antimicrobial therapy</td>
<td>> Staphylococcal infection</td>
</tr>
<tr>
<td>• New heart block</td>
<td></td>
</tr>
</tbody>
</table>

Following completion of treatment in uncomplicated and haemodynamically stable patients

| In the presence of prosthetic material/conduits |
| In unrepaired left-to-right shunts (e.g. ventricular septal defect; VSD and patent ductus arteriosus; PDA) or obstructive lesions (e.g. infundibular stenosis and coarctation of aorta; CoA) |

5.5.2 Timing of surgery

Early intervention in children with heart failure or *S.aureus* infection can be safely performed in children with low post-operative mortality and accepted medium to long-term outcome. Nomura and colleagues\(^\text{146}\) demonstrated that surgical intervention during the active phase of infection might be a necessary adjunct to antimicrobial therapy in certain subgroups. Cardiac surgery performed within 1 week of diagnosis of a cerebrovascular accident (CVA) due to septic embolisation was safe.\(^\text{147}\) Early surgical involvement in children with staphylococcal infection might have an advantageous role in their treatment by minimising the risk of embolisation and abscess formation, achieve native valve repair and potentially reverse the cause of ventricular dysfunction.\(^\text{148}\)
KEY MESSAGE:

For native and prosthetic valve endocarditis, the timing for intervention is similar to that of adults.

<table>
<thead>
<tr>
<th>Timing of surgery</th>
<th>Preferable clinical condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early (within 1-2 weeks)</td>
<td>• Unrepaired congenital heart lesions with haemodynamic instability
• Infected pacemakers/CIED
• Infected conduits with conduit failure causing haemodynamic instability
• Infected conduit or intracardiac patches with enlarging vegetations despite antimicrobial therapy and recurrent embolisation
• Infected intracardiac patches with dehiscence
• Heart block secondary to IE</td>
</tr>
<tr>
<td>Semi-elective (after 2 weeks of antimicrobial cover)</td>
<td>• Unrepaired CHD with persistent infection
• Infected conduit, devices, stents and intracardiac patches with persistent infection
• Fungal, S. aureus or other highly resistant microorganisms</td>
</tr>
<tr>
<td>Elective surgery (after 6 weeks of antimicrobial therapy)</td>
<td>• Infected conduit, devices, stents and intracardiac patches with controlled infection and haemodynamic stability
• Unrepaired CHD with controlled infection and haemodynamic stability</td>
</tr>
</tbody>
</table>
5.5.3 Surgical techniques

Surgical techniques are similar as in the adult patients with IE (refer Sections 5.1-5.4). However there are some important principles to consider in the paediatric or CHD population.

- Preserving the native valve is important in children.
- Early intervention favours the preservation of the native annulus.
- Surgery aims at valve repair rather than replacement:
 - Mitral valve debridement and repair using Carpentier techniques offer excellent survival, freedom from re-operation and late function status.\(^\text{147}\)
 - If aortic valve replacement is required, the Ross operation is effective for patients with annular or root abscesses.\(^\text{145}\)
- Endocarditis involving the VSD patch should undergo replacement of the patch.
- Right ventricular to pulmonary artery conduit have to be replaced to prevent abscess formation and pulmonary embolisation.

The surgical mortality for IE in the group of CHD has been reported between 10-15%. Mortality is higher in premature infants and in the presence of fungal endocarditis.\(^\text{149}\) Prophylactic surgery to prevent a primary embolic event is not recommended given the lack of proven benefit and long-term risks of valve replacement in childhood.\(^\text{145}\)

Recommendations

Principles of surgical intervention in the paediatric CHD patients:

1. Degree of illness not be considered a limitation to surgical intervention, because the alternative, to delay or defer surgery, can have dire consequences. [I/B]
2. Surgery may be considered for patients with relapsing PVE even if valvular function remains intact after prolonged medical therapy. [II/B]
6.0 OUTCOME AND FOLLOW-UP

Following adequate antimicrobial therapy with/without surgery, resolution of the infection occurs in most patients with IE. However close monitoring with clinical examination and echocardiography is encouraged especially during the first year post-IE.

The subsequent frequency of follow-up will depend on the following:

- Clinical status of patient on discharge.
- Residual valvular dysfunction (regurgitation).
- Presence and severity of intra and extracardiac complications e.g. heart failure and neurological deficits.

Patients post-IE that require referrals back to a cardiac centre during follow-up include those who:

- Develop relapse and reinfection.
- Require advanced imaging to further quantitate valvular and cardiac structural insult.
- Require surgical intervention.
Surveillance with clinical and echocardiogram evaluation is recommended to monitor for:

- Relapses or reinfection of IE (refer Appendix 1):
 - If patient presents with febrile illness, it is crucial to take 3 sets of blood cultures before starting empirical antimicrobials.

- Worsening clinical status and progression of heart failure:
 - This may be due to on-going infection or progression of the valve dysfunction.

- Severity and progression of the valvular regurgitation with regards to deciding the timing of surgical intervention:
 - For those patients with stable valvular heart disease, recommendation for valve surgery should follow the established guidelines for management of valvular heart disease.

- Delayed antimicrobial toxicity e.g. vestibular or audio toxicity (refer Section 4.2) and *Clostridium difficile* colitis (diarrhoea).

- In those with IE associated with CHD, referral for surgical repair of uncorrected CHD and residual lesions are recommended.

Other important areas to re-emphasise during follow-up are:

- Oral care and dental hygiene (refer Chapter 8).
- Rehabilitation for high-risk behaviour (e.g. IVDU).
- Good skin hygiene.
- Body piercing and tattoos should be discouraged.

Relapse and reinfection (refer Appendix 1) are rare (2-6%). Patient education is important regarding subsequent febrile illness and prompt medical assessment should be emphasised. Physicians should have a high clinical suspicion regarding relapse or reinfection in such cases. A high rate of relapse is associated with:

- *S. aureus*, *enterococcus* and Gram-negative microorganisms such as *Pseudomonas aeruginosa*.
- IVDU especially with pre-treatment symptoms of more than three months duration.
- Previous episode of IE.
- Presence of prosthetic material and CHD.
Factors associated with an increased rate of relapse include:\(^{16}\)

- Inadequate antimicrobial treatment (duration, dose and resistant microorganism).
- Polymicrobial infection in IVDU.
- Empirical antimicrobial treatment in BCNIE.
- Periannular extension.
- Persistent metastatic foci of infection (abscess).
- Prosthetic valve IE.
- Chronic dialysis.

In the case of relapse or reinfection, appropriate antimicrobial therapy is given similar to patients with primary IE, which is up to 42 days.

KEY MESSAGE:

1. On follow-up, patients should be monitored for recurrences of IE, evaluation of side effects from medical therapy and development of complications e.g. heart failure, and the timing and indication for elective surgery.

2. For those patients with valve regurgitation, regular monitoring with echocardiography is needed, following the established guidelines for management of valvular heart disease.

3. Education on preventive measures e.g. good oral and skin hygiene, and rehabilitation of high-risk behaviours should be provided.

4. Risk of relapse is higher in those with inadequate initial antimicrobial therapy, previous history of IE, prosthetic valves, unrepaired CHD, IVDU and *S. aureus* IE.
7.0 SPECIFIC SITUATIONS

7.1 Infective endocarditis in congenital heart disease

Advances in imaging, congenital heart surgery and intensive care have changed the spectrum of IE in paediatrics and CHD. More paediatric patients with CHD are surviving to adulthood.153-155

Surgery may eliminate the risk of IE in patients with simple shunts with no residual lesions. However, in complex congenital lesions, due to the use of prosthetic material, palliative shunts and long-term sequelae of the post-operative course, the risk of IE is increased.156-158 The risk of IE in patients with CHD increases with age. The cumulative incidence of post-operative IE in adults with CHD ranges between 1\% and 6\% at 10 and 25 years follow-up respectively, and varies based on the different heart defects.157 Cumulative incidence of IE post-aortic valve stenosis repair at 25 years was however, unusually high at about 13\%.157 Based on a prediction model of IE risk in adults with CHD, the cumulative observed risk of IE is 2.4\% at 40 years old and 4.7\% at 60 years of age.159 In developing countries, IE complicates unrepaired CHD, cyanotic heart defects and those who have had palliative procedures.160-163

7.1.1 Epidemiology

Most available data are from single large centres, based on in-patient findings. A population based review of the Quebec CHD Database from 1988 to 2010 reported that the cumulative incidence of IE from birth to 18 years was 6.1 first cases per 1,000 children which corresponded to an incidence rate of 4.1 per 10,000 person-years,164 which is lower than the overall incidence of IE in adults with CHD, reported as 11 per 10,000 person-years.159 In a Japanese survey of hospitalised patients from 66 institutions (1997-2001), the prevalence of IE in CHD was 0.42\%.165

The mean age of IE in children with CHD was 8.4 years (range 10 days-17 years) and in the adult patient with CHD it ranged between 16.8-32.5 years.160,165,166 There was a male preponderance (1.5:1).159,165,167 IE in CHD occurred more commonly on the right side and was highest up to 6 months post-intervention.165,167,168

Gram-positive cocci are the common aetiological agents of IE in children; VGS is most common followed by \textit{S. aureus} especially in those patients with indwelling catheters and prosthetic material.158
7.1.2 Mortality

IE in patients with CHD has significant morbidity and mortality. The overall inpatient mortality for IE in children and adults with CHD were 9.4-11% and 6-7.2% respectively.165,166,168 Late mortality was 7.7%.167

Risk factors for in-hospital mortality in CHD were:149,161,169

- Vegetation size ≥ 20 mm.
- Age < 1 year.
- Presence of heart failure at diagnosis.
- \textit{S. aureus} as a causative microorganism.
- Aortic valve involvement.
- Nosocomial/healthcare associated endocarditis.

Surgical intervention in selected cases decreased the in-hospital mortality.149 However, as surgery was performed in those who were more ill and/or had complications, the mortality of surgery during active IE was high, ranging from 11-14%.165,167

Predisposing risk factors for IE in CHD are:164,168

- Complex cyanotic CHD.
 - Unrepaired and/or palliated (e.g. aorto pulmonary shunts).
- Repaired CHD with prosthetic material including conduits, bioprosthetic homograft and/or CIED.156
- Repaired CHD with residual lesions (refer Table 7.1).157
- Within 6 months following cardiac surgery or transcatheter device interventions.170
- VSD with associated valve or outflow tract anomalies (aortic regurgitation, left ventricle to right atrial shunt, subaortic ridge and infundibular stenosis).157,159,171
- Age of < 3 years.164

7.1.3 Lesion specific incidence of infective endocarditis in congenital heart disease

Identifying patients who are at risk of IE allows for earlier diagnosis and treatment as well as instituting infection prevention measures. Review of a population based registry of all Oregon residents less than 19 years old who underwent surgery for 12 major CHD over a period of more than 30 years showed that the cumulative risk of post-operative IE varied depending on the cardiac defect.157 The cumulative incidence of post-operative IE based on different heart defects is shown in Table 7.1.
Table 7.1: Cumulative incidence of post-operative IE based on CHD lesions

<table>
<thead>
<tr>
<th>Type of repaired CHD</th>
<th>Cumulative incidence of IE at years post-intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>High to moderate risk</td>
<td></td>
</tr>
<tr>
<td>Valvular AS</td>
<td>13.3% at 25 years</td>
</tr>
<tr>
<td></td>
<td>20.6%* at 30 years</td>
</tr>
<tr>
<td>Pulmonary atresia and VSD</td>
<td>6.4%* at 15 years</td>
</tr>
<tr>
<td>VSD</td>
<td>4.1%* at 30 years</td>
</tr>
<tr>
<td>d-TGA</td>
<td>4.0% at 20 years</td>
</tr>
<tr>
<td>Primum ASD</td>
<td>2.8% at 20 years</td>
</tr>
<tr>
<td>CoA</td>
<td>3.5% at 30 years</td>
</tr>
<tr>
<td>Complete AVSD</td>
<td>1.1% at 15 years</td>
</tr>
<tr>
<td>TOF repair</td>
<td>1.3% at 30 years</td>
</tr>
<tr>
<td>Low risk</td>
<td></td>
</tr>
<tr>
<td>Secundum ASD</td>
<td>0.0%*</td>
</tr>
<tr>
<td>PS</td>
<td>0.0%</td>
</tr>
<tr>
<td>PDA</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

* The risk of IE in the aortic valve was noted to be higher in post-interventional or prosthetic valve compared to native valve with a 10-year incidence of 26% and 5% respectively. In the cohort with aortic valve stenosis, risk of IE increased over time after surgery, with a cumulative incidence of 13.3% at 25 years.

* For patients with pulmonary atresia and VSD the risk depended on the residual right ventricle to pulmonary artery conduit stenosis.

* IE in repaired/unrepaired VSD was higher when associated with valve anomalies or outflow tract obstructions (aortic valve regurgitation and left ventricle to right atrial shunt). The estimated lifetime risk of IE in unrepaired VSD was higher in the adult with CHD (9.7-12%). There was no documented IE in repaired VSD without other associated lesions.

* The risk of IE in secundum ASD is negligible. This risk increases in the presence of mitral valve anomalies (mitral regurgitation from a cleft or prolapsed mitral valve).

AS: aortic stenosis; VSD: ventricular septal defect; d-TGA: dextro-transposition of the great arteries; ASD: atrial septal defect; CoA: coarctation of the aorta; AVSD: atrioventricular septal defects; TOF: tetralogy of Fallot; PS: pulmonary valve stenosis; PDA: patent ductus arteriosus.

Adapted from Morris CD, et al. JAMA. 1998.157
For patients with CHD followed up to 18 years from birth, the cumulative risk of IE per 1,000 patient-years was noted to be highest in:164

- Cyanotic CHD.
- Atrioventricular septal defect (AVSD).
- Left-sided lesions (aortic and mitral stenosis/regurgitation and coarctation of aorta; CoA).
- Right-sided lesions (Ebstein anomaly, tricuspid or pulmonary valve anomalies).

7.1.4 Management of infective endocarditis in congenital heart disease

The diagnostic and management principles of IE in CHD do not defer from the general principles (refer Chapters 3, 4 & 5). The management is mainly appropriate antimicrobial treatment based on the respective microorganism. Surgery is limited to those with failure of medical treatment, complications and prosthetic material IE (refer Section 5.5). These patients preferably should be referred to a centre with the expertise to diagnose (imaging and microbiological diagnosis) and manage (medically and surgically) the IE as well as its complications.

However some specific considerations are suggested below:

- TTE is adequate for most patients. However TEE should be considered in those with poor transthoracic echocardiography window, prosthetic material and in those who have high clinical suspicion but normal TTE findings.
- In the context of complex CHD with or without prior surgical interventions, cardiac MRI and cardiac CT are also powerful tools to assist in diagnosis.
- Following completion of IE treatment, patients with residual lesions or uncorrected intracardiac shunts should be referred for surgical repair.
- Good oral and skin hygiene is crucial, and antimicrobial prophylaxis is limited to high-risk lesions and following selective procedures (refer Chapter 8).

Recommendation

Management of adult paediatric CHD IE patients:

Referral to tertiary centres with expertise in CHD imaging, surgery and intensive care is advisable. [IIa/C]
7.2 Infective endocarditis in paediatric patients

Frequency of IE in paediatric population is increasing due to:158,164,172

- Improved survival in children with CHD.
- Hospitalised neonates.

Rheumatic heart disease is currently not a common cause of IE in children except in some developing countries.160-163,173 In a multicentre report, the annual incidence rate of paediatric IE in the USA was reported to be between 0.05-0.16 per 1,000 hospital admissions from 2003-2010.167 Review of children hospitalised with IE from Healthcare Cost and Utilization Project Kids’ Inpatient Databases (KID) from 2000 and 2003 in the USA showed a bimodal pattern of admission, with peaks in infancy (31 days-11 months of age) and late teenage period (17-20 years of age).174

IE in paediatric patients occurred in three groups of patients:

- Children with CHD (refer Section 7.1).
- Children with acquired valvular heart disease.
- Neonates with normal heart structures.

7.2.1 Infective endocarditis in neonates with normal heart structures

Diagnosis of IE in the first month of life has been reported to be about 7.3-18\%175 of total paediatric IE cases. This is due to the prolonged use of indwelling central venous catheters in the management of neonates and infants with complex medical problems in intensive care units.158,174,176 The mortality was highest in the premature infant (31\%) and those with \textit{S. aureus} IE.174 The left-sided cardiac structures were usually affected. Common microorganisms were \textit{S. aureus}, \textit{Coagulase negative staphylococcus strains}, Gram-negative bacterial species and \textit{Candida} spp.

Predisposing risk factors include:175,176

- Immunosuppressed patients such as premature babies, oncology patients on chemotherapy, chronic diseases on prolonged steroid therapy and post-transplant on immunosuppressive drugs.
- Intravenous therapy within 4 weeks before the onset of endocarditis.
- Previous invasive procedure (cardiac surgery, cardiac catheterisation and non-cardiac invasive procedure) within 8 weeks before IE onset.
- Presence of an indwelling central venous catheter 1 week before onset of symptoms of IE.
7.2.2 Clinical presentation

Diagnosis of IE may be difficult as the clinical manifestations may be non-specific and undistinguishable from septicaemia. The presentation may be indolent with non-specific signs or, acute and fulminant.

The classical extracardiac manifestations (Osler's nodes, Janeway lesions and splinter haemorrhage) are not common in children. More commonly seen are clinical manifestations of septic emboli to the abdomen, brain and lungs (refer Table 7.2). Complications of IE are similar to the adult patient e.g. congestive heart failure, embolic phenomenon, heart block and valve dehiscence.

Table 7.2: Common symptoms and signs in paediatric IE

<table>
<thead>
<tr>
<th>Non-specific symptoms of sepsis</th>
<th>Signs</th>
<th>Laboratory parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fever
• Poor feeding
• Reduced activity
• Vomiting and/or diarrhoea
• Weakness
• Weight loss
• Arthralgia
• Recurrent fever for > 4 weeks</td>
<td>• General:
 > Tachypnoea
 > Tachycardia
 > Respiratory distress
 > Pallor
 • Cardiac:
 > Signs of congestive heart failure
 > New or changing murmur
 • Septic emboli:
 > Abdomen: splenomegaly
 > Neurological: seizure, hemiparesis and meningitis
 > Bone: osteomyelitis
 > Lungs: pneumonia</td>
<td>• Thrombocytopenia
 • Neutrophilia/neutropenia
 • Raised CRP and ESR</td>
</tr>
</tbody>
</table>
7.0 SPECIFIC SITUATIONS

7.2.3 Management of paediatric infective endocarditis

7.2.3.1 Diagnosing infective endocarditis in paediatric patients

As in adults, the diagnosis of IE in children is made based on the modified Duke criteria.56,177,178 Since the presentation in children can be non-specific, a high clinical suspicion is necessary especially in those with predisposing risk factors. A thorough history, physical examination and investigations (imaging, blood cultures, microbiological tests and HPE) should be done to make the diagnosis (refer Chapter 3.0).

\textit{S. Aureus} bacteraemia is one of the major criteria in the modified Duke criteria irrespective of the cause and is the most common pathogenesis of bacteraemia in the presence of central venous catheters.56 Removal of the central venous catheters in those with prolonged bacteraemia is advised before the diagnosis of IE.179 The associated use of hyperalimentation and high glucose concentrations with central venous catheter has contributed to the increase in \textit{Candida} spp. IE in neonates. BCNIE although less common, can also occur. It is usually due to either previous antimicrobial treatment or fastidious microorganisms. The diagnosis and management of BCNIE is similar to the adult and is described in Chapters 3 and 4.

TTE is more sensitive (97\%) in young patients (weight < 60 kg) compared to adult patients in detecting endocarditis. However for those patients who are obese, have prosthetic grafts, valves and conduits, chest deformities, and in those with hyperinflated lungs or compromised respiratory function, TEE serves as an important adjunct (refer Section 3.3).180

7.2.3.2 Treatment of infective endocarditis in paediatric patients

The management of IE in paediatric patients and IE in CHD is predominantly by medical treatment and the choice of antimicrobials will depend on the microorganism cultured (refer Section 4.2). It is important to use appropriate dosing based on weight especially in the neonate. It is recommended to remove or change all long-standing central venous catheters if present.
7.3 Infective endocarditis in transcatheter valve implantations

7.3.1 Transcatheter pulmonary valve implantation

Transcatheter (percutaneous) pulmonary valve implantation (TPVI) as an alternative to open-heart surgery for right ventricular outflow tract (RVOT) valve implantation was first described in 2000 by Bonhoeffer et al.181 Similar to surgical valve series, the incidence of early PVE has been reported to be ≤ 1%.182

IE in TPVI is a clinical diagnosis and requires a high index of suspicion, as patients may present with non-specific symptoms. Patient characteristics, timing and presentation of TPVI IE are quite complex.183

Early PVE is defined as occurring within the first 12 months after valve implantation/replacement.

- High index of suspicion is required.
- In addition to Duke criteria, any degree of increase of RVOT gradient (unexplained by a structural complication such as stent fracture), valvular involvement and new onset of pulmonary regurgitation should raise a high suspicion of IE.183
Possible risk factors:183,184

- Male.
- Dental treatment.
- Septic skin wound.
- Reactivation of previously treated fungal infection.
- Previous history of medically treated IE.
- Multiple stents in RVOT.
- Distorted RVOT anatomy.
- Contegra conduit and Melody valve are at higher risk compared to homograft.

Buber et al. proposed life long pre-procedural prophylactic antimicrobials for TPVI patients, with either a history of previous IE or a complex RVOT anatomy.185 Fever (80%) and heart failure (22%) were the most common initial symptoms of PVE in the transcatheter valve replacement group (aortic and pulmonary valve).

7.3.1.1 Management plan

- If TPVI endocarditis is suspected, the patient should be referred to a SC.

 > Medical management:182

 » Antimicrobial treatment for at least 6 weeks, based on the causative microorganism (usually S. aureus in TPV).

 > Surgical intervention:

 » The in-hospital mortality rate associated with episode of PVE was 7.1%.

 » Surgical ex-plantation of the infected conduit valve is recommended considering the younger population of patients in TPVI.182

- Post-discharge follow-up

 > Due to complexity of patient with TPVI IE, follow-up should be at a SC (refer Section 4.1.4).

Recommendations

For the management of TPVI IE in children:

1. In addition to Duke criteria, any degree of increase of RVOT gradient (unexplained by a structural complication such as stent fracture), valvular involvement and new onset of pulmonary regurgitation should raise a high suspicion of IE. [IIa/B]
2. Antimicrobial prophylaxis is recommended prior to invasive procedures in TPVI patients. [IIa/C]
7.3.2 Transcatheter aortic valve implantation/transcatheter aortic valve replacement

Transcatheter aortic valve implantation/replacement (TAVI/TAVR) is an important therapeutic option for the treatment of aortic valve stenosis in patients with high operative risk. Although infrequent, one important complication of TAVI is IE. IE for TAVI is classified according to the modified Duke criteria. Patients with high clinical suspicion of TAVI related PVE should be referred to specialist centres (refer Section 4.1.4). In patients who have had TAVI and who develop prolonged fever, valve murmur or new valvular regurgitation, a TTE should be performed. Since images may be suboptimal due to acoustic shadows, a TEE should also be considered in order to obtain clearer views of the prosthetic valve.

In the major PARTNER (Placement of Aortic Transcatheter Valves) trial, PVE occurred at a similar rate in the surgical and transcatheter groups (1.5% and 1.0% respectively, p = 0.61). Two varieties of valves; the Edwards SAPIEN (Edwards Lifesciences Inc., Irvine, CA, USA) and Medtronic CoreValve (Medtronic Inc., Minneapolis, MN, USA) have had reported cases of PVE.

In IE with TAVI, patients have had positive blood cultures with a microbiological profile typical to that previously documented in surgical bioprosthetic PVE; *Enterococcus* spp., CoNS, *S. aureus* and *Streptococcus* spp. The incidence of PVE may also be increased by patient risk factors such as diabetes mellitus, oral hygiene and adherence to antimicrobial prophylaxis for dental procedures.

Antimicrobial prophylaxis for TAVI patients is recommended as in Chapter 8.0. For TAVI related PVE, the first line of treatment is targeted antimicrobial therapy. While conventional indications for operative intervention in the setting of PVE may be less applicable to high-risk TAVI cohorts, surgical treatment remains an option to be discussed in the context of complications related to IE.

Management of patients with TAVI IE:

1. Patients with high clinical suspicion TAVI related PVE should be referred to SC. [IIa/C]
2. Targeted antimicrobial therapy remains the first line of treatment for TAVI related PVE. [IIa/B]
7.4 Infective endocarditis in cardiac implantable electronic devices

CIED IE is serious and is associated with high mortality.189 The precise incidence of CIED IE is uncertain and varies widely between published series.190,191 Nonetheless, rates are set to rise due to a wider range of cardiac devices available in the market, and with increased implantation in the older population.191,192

Factors associated with a greater risk of CIED IE include:

- Immunosuppression (corticosteroids use, diabetes and renal failure).
- Oral anticoagulation use.
- Co-existing illness (ageing population).
- Periprocedural factors such as failure to use appropriate periprocedural antimicrobial prophylaxis.
- Device revision/replacement.
- Amount of indwelling hardware.
- Operator experience.
- Microbiology of bloodstream infection (S. aureus).

Clinical presentation is often vague and non-specific and thus a high index of clinical suspicion is mandated.193 CIED IE must always be considered in the presence of unexplained fever in a patient with a CIED. Patients who develop fever or bloodstream infection with no obvious source, should be referred back to the primary centre responsible for the implantation. Patients should be educated regarding these risks.

Echocardiography and blood cultures (refer Sections 3.2 & 3.3) are the mainstay for the diagnosis of CIED IE. TTE may identify lead vegetation and tricuspid valve involvement. However, a negative TTE does not rule out CIED IE, hence it is recommended to proceed to a TEE examination. TEE is more sensitive and specific to TTE for diagnosis of lead-related endocarditis.

Considering their complementary role, it is preferable to perform both investigations in cases of suspected CIED IE, as a TTE at time of diagnosis may be used as baseline for additional studies during the course of the illness. In cases where the clinical suspicion is still high but cardiac imaging with TTE and TEE yields no evidence of endocarditis (false negative) other imaging modality such as radionlabelled leucocyte scintigraphy and 18F-FDG PET/CT scanning may prove useful.194-196 Repeated TEE is not necessary after completion of treatment.
For the management of patients with CIED IE:

1. Before initiation of antimicrobial therapy, 3 or more sets of blood cultures should be taken. [I/C]
2. Patients with suspected CIED IE regardless of positive or negative blood cultures, and independent of TTE findings require TEE to evaluate the infection. [I/C]
3. In patients with suspected CIED IE with positive blood cultures and negative echocardiographic findings, 18F-FDG PET/CT can be done. [IIb/C]

Recommendations

Staphylococcus (especially CoNS) account for 60-80% of CIED IE in most reported series. Methicillin resistance among staphylococci varies among studies. Polymicrobial infection sometimes involves more than one species of CoNS, Corynebacterium spp. and Propionibacterium acnes. Gram-negative bacilli and Candida spp. are rarely identified as pathogens in CIED IE.

At least 4-6 weeks of antimicrobials are recommended for CIED IE. In the presence of lead vegetation on echocardiography, urgent referral back to the primary implantation centre should be considered at this time point, if not done so at priori. Complete hardware removal is advocated and if required, a temporary device is implanted until the infection is resolved. Careful assessment of new implantation strategy must be considered prior to removal in patients whom are “device-dependent”. Blood cultures should be obtained within 24 hours after hardware removal for evidence of microorganism clearance from bloodstream. When a new device implantation is necessary, it should be done on the contralateral side to avoid new device infection.

Recommendations

When extraction and reimplantation of CIED is considered in CIED IE:

1. In definite CIED IE as well as isolated pocket infections, antimicrobials before and after extraction and removal of device and leads are recommended. [I/C]
2. When no other apparent source of infection is detected, complete removal of devices should be considered. [IIa/C]
3. Reassessment for the need of reimplantation is recommended after device extraction. [I/C]
4. Postponement of reimplantation for a few days or weeks during antimicrobial therapy is recommended if possible. [IIa/C]
5. In pacemaker-dependent patients who require antimicrobials before reimplantation, a “temporary” ipsilateral device can be considered. [IIb/C]
6. Temporary pacing is not routinely recommended. [III/C]
7.5 Infective endocarditis in pregnancy

IE during pregnancy is rare. All pregnant patients who are diagnosed with IE should be referred to a SC for assessment. A multidisciplinary team that includes a cardiologist, ID physician, obstetrician, obstetric anaesthetist and neonatologist should be involved in the management of the IE and the pregnancy from the onset of the diagnosis. The management care plan should include:

- General management of IE (i.e. similar to non-pregnant patient).
- Timing and indication for cardiac intervention e.g. surgery where indicated. Indications for surgery are as the non-pregnant patients (refer Chapter 5). However, unlike non-pregnant patients, cardiac surgery should be delayed wherever possible till post-delivery.
- A detailed pregnancy and delivery care plan.

The management of IE in pregnancy is addressed in the Heart Disease in Pregnancy CPG (2016) (refer to its 2nd edition Section 4.10 which is available at https://www.malaysianheart.org/?p=cpg&a=1107)

Cardiac patients at risk (of IE) must be given advice during pre-pregnancy counselling sessions on the need for good skin and oral hygiene to minimise the risk of IE. These patients must be referred for professional oral hygiene care throughout their pregnancy.

KEY MESSAGE:

All pregnant women who have IE in pregnancy should be referred to a SC with the appropriate expertise for the management of the IE and pregnancy.
8.0
ANTIMICROBIAL PROPHYLAXIS FOR INFECTIVE ENDOCARDITIS

8.1 Introduction

IE after interventional dental or other procedures is uncommon. For this reason, the use of antimicrobial prophylaxis is only recommended for cardiac patients associated with the highest risk of IE (the European Society of Cardiology; ESC, AHA and National Antibiotic Guidelines). Many bacterial species are known to cause IE, but in recent years staphylococci, commonly associated with healthcare contact and invasive procedures, have overtaken streptococci as the most common cause of IE. As for antimicrobial prophylaxis, the National Institute of Clinical Excellence (NICE) issued the CG64 in 2008 that effectively did not recommend antimicrobial prophylaxis against IE for people undergoing dental procedures (or other non-dental procedures) in the United Kingdom (UK). In the ensuing years, whilst there was a very significant fall in antimicrobial prophylaxis prescribing, there was also a significant increase in the incidence of IE. In 2016, NICE reviewed the evidence and concluded that there was no requirement to change the existing CG64 guidance and emphasised that antimicrobial prophylaxis against IE is not recommended routinely for people undergoing dental, gastrointestinal tract, genitourinary and respiratory tract procedures. Additionally, these guidelines emphasised prevention rather than prophylaxis to reduce the incidence of IE.

It is however, the consensus view of this writing committee that antimicrobial prophylaxis is administered to all patients at high-risk for IE including those with established rheumatic heart disease who are undergoing invasive dental and surgical procedures.

8.2 Cardiac conditions associated with the highest risk of infective endocarditis

Patients with cardiac conditions listed in Table 8.1 are considered as being at increased risk of developing IE and are indicated for antimicrobial prophylaxis.
Table 8.1: Cardiac conditions with increased risk of IE

- Prosthetic cardiac valves or prosthetic material used for cardiac valve repair
- Native valvular heart disease including established rheumatic heart disease
- Previous IE
- Unrepaired cyanotic CHD, including palliative shunts and conduits
- Completely repaired CHD with prosthetic material or devices, for first 6 months after the procedure
- Repaired CHD with residual defects at the site or adjacent to the site of a prosthetic patch or device (which inhibit endothelialisation)
- Cardiac transplantation recipients who develop cardiac valvulopathy

Adapted from European Society of Cardiology, American Heart Association and Cardiac Society of Australia and New Zealand infective endocarditis guidelines.16,204,207

Recommendation

Patients who require antimicrobial prophylaxis:

Antimicrobial prophylaxis must be indicated for patients with the highest risk of IE and/or highest risk of adverse outcome from IE. [IIa/B]

8.3 Antimicrobial prophylaxis for specific procedures

Antimicrobial prophylaxis to prevent IE is indicated in high-risk cardiac patients prior to selected dental and non-dental procedures.

Any procedure where antimicrobial prophylaxis is indicated for surgical reasons, the pre-procedural antimicrobial prophylaxis is normally adequate as IE prophylaxis in high-risk cardiac cases. In procedures where pre-procedural antimicrobial prophylaxis is not routinely given, cardiac patients considered as high-risk should receive antimicrobial prophylaxis prior to procedures expected to produce bacteraemia as discussed in Section 8.3.2.

8.3.1 Dental procedures

The estimated incidence of IE is about 1 per 150,000 dental procedures with antimicrobials prophylaxis and 1 per 46,000 for procedures unprotected by antimicrobials.208 For patients considered as high-risk (Table 8.1), antimicrobial prophylaxis is recommended for invasive dental procedures that involve manipulation of the gingival or periapical region of the teeth or oral mucosa. Routine antimicrobial prophylaxis is not recommended for all patients undergoing dental procedures. Table 8.2 provides a list of dental procedures where antimicrobial prophylaxis for endocarditis may or may not be required for cardiac patients.
Table 8.2: Dental procedures and recommendations for prophylaxis of endocarditis

<table>
<thead>
<tr>
<th>Prophylaxis always required</th>
<th>Prophylaxis required in some circumstances</th>
<th>Prophylaxis not required</th>
</tr>
</thead>
</table>
| • Extractions | Consider prophylaxis for the following procedures if multiple procedures are being conducted, the procedure is prolonged or periodontal disease is present:
 • Full periodontal probing for patients with periodontitis
 • Intraligamentary and intraosseous local anaesthetic injection
 • Supragingival calculus removal or cleaning
 • Rubber dam placement with clamps (where there is risk of damaging gingiva)
 • Restorative matrix band/strip placement
 • Endodontics beyond the apical foramen
 • Placement of orthodontic bands or interdental wedges
 • Subgingival placement of retraction cords, antimicrobial fibres or antimicrobial strips | • Oral examination
• Infiltration and block local anaesthetic injection
• Restorative dentistry
• Supragingival rubber dam clamping and placement of rubber dam
• Intracanal endodontic procedures
• Removal of sutures
• Impressions and construction of dentures
• Orthodontic bracket placement and adjustment of fixed appliances
• Application of gels
• Intraoral radiographs
• Supragingival plaque removal |
| • Periodontal procedures including surgery, subgingival scaling and root planning
• Replanting avulsed teeth
• Other surgical procedures (e.g. implant placement and apicectomy) | | |

8.3.2 Non-dental procedures

8.3.2.1 Respiratory tract procedures

Antimicrobial prophylaxis is recommended for patients with increased risk of IE (Table 8.1) who undergo an invasive respiratory tract procedure that involve incision or biopsy of the respiratory mucosa.\(^\text{209,210}\) For procedures involving an established respiratory tract infection, the antimicrobial must be active against the causative microorganisms in addition to VGS.\(^\text{210}\)
8.0 ANTIMICROBIAL PROPHYLAXIS FOR INFECTIVE ENDOCARDITIS

8.3.2.2 Gastrointestinal and genitourinary procedures
Routine pre-procedural antimicrobial prophylaxis is no longer recommended for patients undergoing genitourinary or gastrointestinal tract procedures. However, for high-risk cardiac patients who have an established gastrointestinal or genitourinary infection, or for those who receive antimicrobial therapy for surgical reasons, the antimicrobial regimen should include an agent active against enterococci, such as ampicillin or vancomycin.16,210

8.3.2.3 Other procedures
Antimicrobial prophylaxis is required for high-risk cardiac patients undergoing these procedures:211

- Incision and drainage of local abscess in the brain, skin and subcutaneous tissue (e.g. boils and carbuncles), eye (e.g. dacryocystitis), epidura, lung, orbital area, perirectal area, liver (e.g. pyogenic liver), tooth and surgical procedures through infected skin.
- Percutaneous endoscopic gastrostomy.

Recommendation

The indications for antimicrobial prophylaxis in high-risk patients:
High-risk procedures are usually those that cause bleeding or tissue damage. VGS is the most common cause of endocarditis after dental or upper respiratory procedures. [IIa/B]

8.4 Antimicrobial regimes for infective endocarditis prophylaxis
The most common pathogen for oral and respiratory tract procedures related endocarditis is alpha-haemolytic streptococci. Antimicrobial regimens for endocarditis prophylaxis are generally directed towards VGS.16,212
Table 8.3: Antimicrobial prophylaxis for invasive dental procedures

<table>
<thead>
<tr>
<th>Situation</th>
<th>Antimicrobial</th>
<th>Adults</th>
<th>Children</th>
<th>Reference</th>
</tr>
</thead>
</table>
| No allergy to penicillin or ampicillin | Amoxicillin or ampicillin | 2 g orally or IV | 50 mg/kg orally or IV | ESC 201516
AHA 2007212 |
| Allergic to penicillin or ampicillin | Clindamycin | 600 mg orally or IV | 20 mg/kg orally or IV | ESC 201516
AHA 2007212 |

- Alternatively, cephalaxin 2 g IV for adults or 50 mg/kg IV for children, cefazolin or ceftriaxone 1 g IV for adults or 50 mg/kg IV for children.
- Cephalosporins should not be used in patients with anaphylaxis, angioedema or urticaria after intake of penicillin or ampicillin due to cross-sensitivity.
- For genitourinary and gastrointestinal procedures antimicrobials should include an agent active against enterococci, such as ampicillin or vancomycin.

Recommendation

Timing of antimicrobial prophylaxis in high-risk patients:
IE antimicrobial prophylaxis (when indicated) is administered as a single dose 30-60 minutes before the procedure. [IIa/B]
8.0 ANTIMICROBIAL PROPHYLAXIS FOR INFECTIVE ENDOCARDITIS

8.5 Preventive measures

8.5.1 Periodontal and dental disease
Periodontal and dental diseases can increase the risk of bacteraemia. Maintenance of optimal oral hygiene may reduce the incidence of bacteraemia with daily activities such as tooth brushing, flossing or use of oral irrigators, and is considered more important than prophylactic antimicrobials for a dental procedure to reduce the risk of IE.213,214 Cardiac patients should be reminded to practise good oral hygiene and have a dental evaluation twice a year. Patients must be informed about the hazards of tongue piercing as this procedure may increase the risk of IE and should be discouraged.16,215

8.5.2 Cardiac implantable devices or prosthesis implantation
IE risk is high in patients undergoing procedures that involve implanting prosthetic material/valves, CIED and transcatheter occluder devices/implantable valves. Maintenance, and good oral and skin hygiene (this includes discouraging body piercing and tattooing) are two of the most important aspects in the preventive measures of IE.216 As it has been shown that the highest risk of developing IE in these patients is during the periprocedure stage, the following measures are recommended:

- Pre-operative screening and eradication of nasal and skin carriage of MRSA using local mupirocin and chlorhexidine, is recommended before elective cardiac surgery in order to treat carrier.217,218
- Treat and eliminate potential sources of sepsis at least 2 weeks prior to procedure/surgery.219
- Pre-procedure antimicrobial prophylaxis before cardiac surgery or transcatheter intervention.220,221

Recommendation

Preventive measures by high-risk patients are:
Cardiac patients must be advised on the importance of dental and cutaneous hygiene. [IIa/B]
IMPLEMENTING THE GUIDELINES AND RESOURCE IMPLICATIONS

The objective of this CPG is to enable the healthcare professionals who encounter IE patients in the local setting to diagnose this disease early and manage it effectively.

Wide dissemination via soft copy (available from http://www.moh.gov.my, http://www.acadmed.org.my, http://www.malaysianheart.org/) will facilitate the implementation of this CPG. However, the limited knowledge in the effective management of the disease and the varied treatment practice among HCP may be its main barriers.

The successful implementation of this CPG would require:

- Continuous medical education (CME) and training on the most effective means of diagnosing IE in patients via regular seminars, lectures, CME meetings and case sharing. These would include:
 > How to recognise findings in patients that should trigger high clinical suspicion of IE.
 > How to effectively confirm the diagnosis of IE.
 > How and when to institute appropriate antimicrobial therapy.
 > When to refer patients to a SC for further management and cardiac surgery.

- Effort to set up an effective referral process in the different states from primary care centres to SC (refer Section 4.1.4).

- The availability of this CPG to all healthcare professionals from primary care centres to tertiary institutions offering speciality and subspecialty care through electronic websites.

- The availability of Quick Reference (QR) guides both through printed copies and electronic websites as an easy yet comprehensive tool for the prevention, diagnosis and management of IE.

The measurement of specific performance measures (refer Appendix 11) affords an effective method in tracking the success of the implementation of these guidelines. The committee does not foresee any additional cost implications. The imaging modalities, microbiological testing and surgery can be performed, and appropriate antimicrobial therapy initiated in tertiary Ministry of Health and Ministry of Education hospitals.
Appendix 1: Classification and definition of infective endocarditis

IE according to localisation of infection and presence or absence of intracardiac material

- **Left-sided native valve IE**
- **Left-sided PVE**
 - Early PVE < 1 year after valve surgery
 - Late PVE > 1 year after valve surgery
- **Right-sided native valve IE**
- **Device related IE**

IE according to the mode of acquisition

<table>
<thead>
<tr>
<th>Healthcare associated IE</th>
<th>Nosocomial</th>
<th>Non-nosocomial</th>
</tr>
</thead>
</table>
| IE developing in a patient hospitalised > 48 hours prior to onset of signs and symptoms consistent with IE | Signs and symptoms of IE starting < 48 hours after admission in a patient with healthcare contact defined as:
- Home-based nursing or intravenous therapy, haemodialysis, or intravenous chemotherapy < 30 days before the onset of IE
- Hospitalisation in an acute care facility < 90 days before the onset of IE
- Resident in a nursing home or long-term care facility |
| Community acquired IE | Signs and symptoms of IE starting < 48 hours after admission in a patient not fulfilling the criteria for healthcare associated infection |
| Intravenous drug abuse associated IE | IE in an active injection drug user with no alternative source of infection |

Active IE (at least one of the below)

- Persistent fever and positive blood cultures
- Inflammatory morphology findings during surgery
- On antimicrobial therapy
- Evidence of active infection on HPE
Recurrence

<table>
<thead>
<tr>
<th>Relapse</th>
<th>Repeat episodes of IE caused by the same microorganism < 6 months after the initial episode</th>
</tr>
</thead>
</table>
| Reinfection | • IE infection with a different microorganism
• A repeat episode of IE caused by the same microorganism > 6 months after the initial episode |

Adapted from European Society of Cardiology infective endocarditis guidelines. 2009.
Appendix 2: Enterobacteriaceae

The family Enterobacteriaceae includes many genera that are Gram-negative rods. They are also known as enteric Gram-negative rods or enteric bacteria (enteric means pertaining to the intestines).

Enterobacteriaceae have the following characteristics:

- Gram-negative rods.
- Grow well on MacConkey agar and can be divided into lactose-fermenter or non-lactose fermenters.
- Grow aerobically and anaerobically (are facultative anaerobes).
- Ferment glucose, often with gas production.
- Catalase-positive, oxidase-negative and reduce nitrate to nitrite.

The following are some of the Enterobacteriaceae microorganisms that can cause IE:

- *Enterobacter aerogenes*.
- *Enterobacter cloacae*.
- *Escherichia coli*.
- *Klebsiella pneumoniae*.
- *Salmonella* spp.
- *Serratia liquefaciens*.
- *Serratia marcescens*.

Reference:
Appendix 3: Blood culture collection

Strict aseptic technique should be used throughout the procedure.

1. Identify the site of venepuncture where blood is to be drawn.
2. Wash your hands using soap and water, then dry or apply an alcohol hand rub.
3. Put on a pair of sterile gloves.
4. Cleanse the site of the venepuncture with 70% isopropyl alcohol, allowing it to air dry.
5. Disinfect the skin of site on a circle approximately 5 cm in diameter with chlorhexidine gluconate in alcohol, rubbing vigorously for at least 30 seconds. Allow to air dry.
6. To prevent contamination, do not palpate the disinfected venepuncture site.
7. Perform venepuncture.
8. Draw blood using a sterile needle and syringe or a blood collection device.
9. Prior to use, examine the blood culture bottles for evidence of damage or deterioration (discoloration).
10. Check the expiry date printed on each blood culture bottle. Discard bottles that have expired.
11. Recommended volume of blood (OR follow manufacturer’s instruction):
 a. Adult: 10 ml of blood into each culture bottle (aerobic/anaerobic bottles).
 b. Paediatric: 1-5 ml of blood in paediatric blood culture bottle.
12. Disinfect the rubber septum on the blood culture bottles with 70% isopropyl alcohol using fresh alcohol prep for each container. Allow bottle tops to dry to fully disinfect.
13. Using a transfer device or a fresh sterile needle, aseptically transfer the blood into the blood culture bottles as soon as possible.
14. If the amount of blood drawn is less than the recommended volume, the blood should be inoculated into the aerobic bottle first, since aerobic and facultative bacteria cause most bacteraemia. Any remaining blood should then be inoculated into the anaerobic bottle.
15. Invert the blood culture bottles gently several times to prevent clotting.
16. Label each bottle with the appropriate specimen label that contains the patient’s name, ID number and, date and time of collection.
17. Send the blood culture bottles to the laboratory within 2-4 hours of collection.
1. Blood cultures **should not be** obtained from indwelling intravascular access devices, e.g. intravascular catheters or ports, as it is associated with higher contamination rates. When blood is obtained from a port or line, blood drawn via a peripheral vein should also be taken for meaningful interpretation.

2. Blood culture bottles **should not be** refrigerated after they have been inoculated.

3. Do not leave the blood cultures at room temperature for more than 4 hours, as it will delay or impede the detection of growth by the continuous-monitoring blood culture instrument.

References:
2. BD BACTEC Package insert PP-105E 2001/01.
Appendix 4: Directory of laboratories*

Table: Directory of main laboratories that provide serological testing of rare aetiological agents of infective endocarditis

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Serology IgG/IgM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brucella spp.</td>
<td>IMR</td>
</tr>
<tr>
<td></td>
<td>HSB</td>
</tr>
<tr>
<td>Coxiella burnetti</td>
<td>IMR</td>
</tr>
<tr>
<td></td>
<td>HSB</td>
</tr>
<tr>
<td>Bartonella spp.</td>
<td>IMR</td>
</tr>
<tr>
<td>Legionella spp.</td>
<td>HKL</td>
</tr>
<tr>
<td></td>
<td>UMMC</td>
</tr>
<tr>
<td></td>
<td>PPUKM</td>
</tr>
</tbody>
</table>

- PCR for *Brucella* is available in IMR.
- HPE of the *cardiac or valvular tissue, or emboli* is available upon request at State and major specialist hospitals with anatomic pathology services.

IMR: Institute of Medical Research; HSB: Hospital Sungai Buloh; HKL: Hospital Kuala Lumpur; UMMC: University Malaya Medical Centre; PPUKM: Pusat Perubatan Universiti Kebangsaan Malaysia.

*This list is not exhaustive and only include public institutions with the available facilities. For a full list of accredited laboratories, please refer to Standards Malaysia website (www.jsm.gov.my).

Note:

1. Interpretation of serological results in these rare aetiological agents of IE can be difficult. **Please consult an ID physician to guide treatment in these cases.**
2. PCR amplification of 16SrDNA gene and sequencing for the identification of bacterial pathogen from *bacterial isolate* is provided at the Department of Medical Microbiology PPUM.
The main laboratories and the contact details are as follows:

<table>
<thead>
<tr>
<th>Institution/hospital</th>
<th>Name of laboratory and address</th>
<th>Contact number</th>
</tr>
</thead>
</table>
| Institute for Medical Research | Bacteriology Unit Institute for Medical Research
Jalan Pahang
50588 Kuala Lumpur | 03-26162666 |
| Hospital Sungai Buloh | Microbiology Unit Department of Pathology
Hospital Sungai Buloh
47000 Sungai Buloh, Selangor | 03-61454333 |
| Hospital Kuala Lumpur | Microbiology Unit Department of Pathology
Hospital Kuala Lumpur
Jalan Pahang
50586 Kuala Lumpur | 03-26155590 |
| University Malaya Medical Centre | Department of Medical Microbiology
Pusat Perubatan Universiti Malaya
Lembah Pantai
59100 Kuala Lumpur | 03-79493039 |
| Pusat Perubatan Universiti Kebangsaan Malaysia | Department of Medical Microbiology and Immunology
Pusat Perubatan UKM
Jalan Yaacob Latiff
56000 Kuala Lumpur | 03-91455555 |
| Pusat Pakar Perubatan UiTM | Anatomic Pathology Unit Centre for Pathology Diagnostics and Research Laboratories
Pusat Pakar Perubatan UiTM
Sungai Buloh Campus
47000 Sungai Buloh Selangor | 03- 61265053 |

*This list is not exhaustive and only includes public institutions with the available facilities. For a full list of accredited laboratories, please refer to Standards Malaysia website (www.jsm.gov.my).
Appendix 5: Guidelines on specimen collection

Instructions for specimen collection and transport for HPE of cardiac valvular/tissue/emboli in the diagnosis of infective endocarditis.

A. Specimen collection
1. Place the cardiac specimen in a container containing 10% formalin with a volume of approximately 3-4 times tissue volume (30 ml minimum).
2. Do not remove or scrape any tissue (e.g. clots and fibrins) attached to the cardiac specimen.
3. Secure the sample container properly to avoid spillage.

B. Labelling of specimen container(s)
1. Label the specimen container(s) with the patient’s full name, a second patient identifier, and the source/anatomical site and type of the specimen.
2. The label should be placed/written on the container and not on the cap.
3. If there is more than one sample, place multiple specimens in separate containers.
4. Review the completeness and accuracy of the request form in comparison with the label on the specimen container, against the patient’s ID prior to leaving the procedural site.

Note:
If a cardiac specimen is also being collected for:

- Microbiological culture, place the specimen in a container with normal saline.
- HPE, place another specimen in a different container with formalin.
Appendix 6: Centres with PET and SPECT/CT WBC scan services*

<table>
<thead>
<tr>
<th>PET scan</th>
<th>WBC SPECT/CT scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institut Kanser Negara</td>
<td>Hospital Kuala Lumpur</td>
</tr>
<tr>
<td>Pusat Pengimejan Diagnostik Nuclear, Universiti Putra Malaysia</td>
<td>Jabatan Pengimejan Molekul dan Perubatan Nuklear, Pusat Perubatan Universiti Kebangsaan Malaysia</td>
</tr>
<tr>
<td>Jabatan Pengimejan Molekul dan Perubatan Nuklear, Pusat Perubatan Universiti Kebangsaan Malaysia</td>
<td>Medical Physics Unit, University Malaya Medical Centre</td>
</tr>
<tr>
<td>Medical Physics Unit, University Malaya Medical Centre</td>
<td></td>
</tr>
<tr>
<td>Penang General Hospital</td>
<td></td>
</tr>
</tbody>
</table>

This list is not exhaustive and only includes public institutions with the available facilities.
Appendix 7: Centres with available cardiothoracic surgery services*

<table>
<thead>
<tr>
<th>Johor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital Sultanah Aminah, Johor Bahru</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kelantan</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital Universiti Sains Malaysia, Kubang Kerian</td>
<td></td>
</tr>
<tr>
<td>Hospital Raja Perempuan Zainab II, Kota Bahru</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lembah Klang (Klang Valley)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital Serdang</td>
<td></td>
</tr>
<tr>
<td>Pusat Perubatan Pakar, Universiti Teknologi Mara (UiTM), Sungai Buloh</td>
<td></td>
</tr>
<tr>
<td>Hospital Universiti Kebangsaan Malaysia, Cheras</td>
<td></td>
</tr>
<tr>
<td>Pusat Perubatan Universiti Malaya, Kuala Lumpur</td>
<td></td>
</tr>
<tr>
<td>National Heart Institute (IJN), Kuala Lumpur</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pahang</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital Tengku Ampuan Afzan, Kuantan</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Penang</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Penang General Hospital</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sabah</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Queen Elizabeth Hospital, Kota Kinabalu</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sarawak</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Centre, Kota Samarahan</td>
<td></td>
</tr>
</tbody>
</table>

This list is not exhaustive and only includes public institutions with the available facilities.
Appendix 8: Antimicrobial dosing in adults with renal impairment

Loading dose
The size of a loading dose (LD) is the product of the desired drug concentration in the blood and the volume of distribution. It is independent of drug clearance. Therefore, provided the desired drug concentration and volume of distribution are unchanged, the size of the loading dose does not require modification in patients with renal impairment. In cases where there is slight alteration in the volume of distribution, e.g. those with low serum protein or fluid overload, some clinicians may alter the loading dose of some drugs with narrow therapeutic index.¹

Methods of dose reduction in renal impairment
Three common methods are used to maintain drug doses in patients with renal impairment:¹

- Interval method (I):
 Maintain the size of the individual dose and increase the dose interval – used where the size of the dose and the attainment of peak blood concentrations are critical for drug efficacy.

- Dose method (D):
 Reduce the size of individual dose and maintain the same dose interval – used where the size of a dose and peak concentrations are not critical for drug activity.

- Combination method (D & I):
 Uses a combination of the ‘Dose’ and ‘Interval’ methods – used for narrow therapeutic index drugs where close control over blood concentrations should be maintained.

Estimating creatinine clearance in adults
Check renal function before prescribing any drug that requires dose modification in renal impairment, even if only mild impairment is likely.

Renal function and muscle mass both decline with age, hence elderly people may have normal serum creatinine despite reduced renal function. Calculation of creatinine clearance (CrCl) may be necessary to estimate renal function in this population especially when prescribing renally excreted drugs with a narrow therapeutic index.
The Cockcroft-Gault equation estimates CrCl in ml/minute and has been successfully used in the calculation of adults with renal impairment. Weight, age, gender and serum creatinine are required. The formula below should not be used to estimate CrCl in severe renal insufficiency, or with rapidly changing renal function.

Modified Cockcroft-Gault equation:

*If actual body weight (ABW) is < ideal body weight (IBW), use ABW; refer to table for IBW.

\[
\text{CrCl (mL/min)} = \frac{(140 - \text{Age}) \times \text{IBW (kg)}^*}{\text{Serum Creatinine (µmol/l)}} \\
\times 1.04 \text{ for females) or (x 1.23 for males)
\]

Ideal body weight table for adults

<table>
<thead>
<tr>
<th>Height (inches)</th>
<th>Height (cm)</th>
<th>Female IBW (kg)</th>
<th>Male IBW (kg)</th>
<th>Height (inches)</th>
<th>Height (cm)</th>
<th>Female IBW (kg)</th>
<th>Male IBW (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5' 0"</td>
<td>152 – 154</td>
<td>45.5 – 47.3</td>
<td>50.0 – 51.8</td>
<td>6' 0"</td>
<td>183 – 184</td>
<td>73.4 – 74.3</td>
<td>77.9 – 78.8</td>
</tr>
<tr>
<td>5' 1"</td>
<td>155 – 157</td>
<td>48.2 – 50.0</td>
<td>52.7 – 54.5</td>
<td>6' 1"</td>
<td>185 – 187</td>
<td>75.2 – 77.0</td>
<td>79.7 – 81.5</td>
</tr>
<tr>
<td>5' 2"</td>
<td>158 – 159</td>
<td>50.9 – 51.8</td>
<td>55.4 – 56.3</td>
<td>6' 2"</td>
<td>188 – 190</td>
<td>77.9 – 79.7</td>
<td>82.4 – 84.2</td>
</tr>
<tr>
<td>5' 3"</td>
<td>160 – 162</td>
<td>52.7 – 54.5</td>
<td>57.2 – 59.0</td>
<td>6' 3"</td>
<td>191 – 192</td>
<td>80.6 – 81.5</td>
<td>85.1 – 86.0</td>
</tr>
<tr>
<td>5' 4"</td>
<td>163 – 164</td>
<td>55.4 – 56.3</td>
<td>59.9 – 60.8</td>
<td>6' 4"</td>
<td>193 – 195</td>
<td>82.4 – 84.2</td>
<td>86.9 – 88.7</td>
</tr>
<tr>
<td>5' 5"</td>
<td>165 – 167</td>
<td>57.2 – 59.0</td>
<td>61.7 – 63.5</td>
<td>6' 5"</td>
<td>196 – 197</td>
<td>85.1 – 86.0</td>
<td>89.6 – 90.5</td>
</tr>
<tr>
<td>5' 6"</td>
<td>168 – 169</td>
<td>59.9 – 60.8</td>
<td>64.4 – 65.3</td>
<td>6' 6"</td>
<td>198 – 200</td>
<td>86.9 – 88.7</td>
<td>91.4 – 93.2</td>
</tr>
<tr>
<td>5' 7"</td>
<td>170 – 172</td>
<td>61.7 – 63.5</td>
<td>66.2 – 68.0</td>
<td>6' 7"</td>
<td>201 – 202</td>
<td>89.6 – 90.5</td>
<td>94.1 – 95.0</td>
</tr>
<tr>
<td>5' 8"</td>
<td>173 – 174</td>
<td>64.4 – 65.3</td>
<td>68.9 – 69.8</td>
<td>6' 8"</td>
<td>203 – 205</td>
<td>91.4 – 93.2</td>
<td>95.9 – 97.7</td>
</tr>
<tr>
<td>5' 9"</td>
<td>175 – 177</td>
<td>66.2 – 68.0</td>
<td>70.7 – 72.5</td>
<td>6' 9"</td>
<td>206 – 207</td>
<td>94.1 – 95.0</td>
<td>98.6 – 99.5</td>
</tr>
<tr>
<td>5' 10"</td>
<td>178 – 179</td>
<td>68.9 – 69.8</td>
<td>73.4 – 74.3</td>
<td>6' 10"</td>
<td>208 – 210</td>
<td>95.9 – 97.7</td>
<td>100.4 – 102.2</td>
</tr>
<tr>
<td>5' 11"</td>
<td>180 – 182</td>
<td>70.7 – 72.5</td>
<td>75.2 – 77.0</td>
<td>6' 11"</td>
<td>211</td>
<td>98.6 – 103.1</td>
<td></td>
</tr>
</tbody>
</table>

Note: All doses recommended are for the treatment of infective endocarditis only.
Antimicrobial doses in adults with renal impairment

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose for normal renal function</th>
<th>Method</th>
<th>Adjustment for renal failure Estimated CrCl (ml/min)</th>
<th>Dose in patients undergoing renal replacement therapies</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMINOGLYCOSIDES</td>
<td></td>
<td></td>
<td>> 50-90</td>
<td>10-50</td>
<td>< 10</td>
</tr>
<tr>
<td>Gentamicin²,³</td>
<td>1 mg/kg 8 hourly</td>
<td>I</td>
<td>CrCl 40-59: 1 mg/kg daily</td>
<td>CrCl 20-39: 1 mg/kg daily 1 mg/kg ONCE (check level in 24 hours and redose when serum level is < 1 mg/l (< 2 µmol/l)) 1 mg/kg ONCE (check level in 24 hours and redose when serum level is < 1 mg/l (< 2 µmol/l))</td>
<td>• Monitor gentamicin level and renal function weekly. There should be a low threshold for stopping gentamicin in patients with deteriorating renal function or other signs of toxicity. • When given in a single daily dose, give infusion over 30 minutes. Aim for pre-dose (trough) serum level of < 1 mg/l (< 2 µmol/l). • Trough levels should be checked to monitor for toxicity in patients with renal impairment.</td>
</tr>
<tr>
<td>Drug</td>
<td>Dose for normal renal function</td>
<td>Method</td>
<td>Adjustment for renal failure Estimated CrCl (ml/min)</td>
<td>Dose in patients undergoing renal replacement therapies</td>
<td>Comments</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
<td>--------</td>
<td>---</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Cefazolin²,⁴,⁵-⁷</td>
<td>2 g IV 8 hourly</td>
<td>I</td>
<td>2 g IV 8 hourly</td>
<td>CrCl 35-54: 2 g IV ≥ 8 hourly</td>
<td>HD: 500 mg then 1 g IV daily; give post-dialysis on dialysis days CAPD: 500 mg IV 12 hourly CVVH: LD 2 g then 2 g IV 12 hourly CVVHD/CVVHDF: LD 2 g then either 1 g IV 8 hourly or 2 g 12 hourly</td>
</tr>
<tr>
<td>Cefepime²,⁶-⁹</td>
<td>2 g IV 8 hourly (max. dose)</td>
<td>D & I</td>
<td>2 g IV 8 hourly</td>
<td>CrCl 30-60: 2 g IV 12 hourly</td>
<td>HD: 1 g initially then 500 mg-1 g daily; give post-dialysis on dialysis days CAPD: 2 g IV 48 hourly CVVH: LD 2 g then 1-2 g 12 hourly CVVHD/CVVHDF: LD 2 g then either 1 g IV 8 hourly or 2 g 12 hourly</td>
</tr>
<tr>
<td>Ceftriaxone¹⁰,¹¹</td>
<td>2 g IV daily (max. 4 g/day)</td>
<td>-</td>
<td>2 g IV daily</td>
<td>2 g IV daily (max. 2 g/day)</td>
<td>HD: 2 g IV daily; give post-dialysis on dialysis days HDF/Highflux, CAPD: Dose as in CrCl < 10 CAVHD/CVVHD/CVVHDF: 2 g IV 12 hourly to daily</td>
</tr>
<tr>
<td>Drug</td>
<td>Dose for normal renal function</td>
<td>Method</td>
<td>Adjustment for renal failure Estimated CrCl (ml/min)</td>
<td>Dose in patients undergoing renal replacement therapies</td>
<td>Comments</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------------</td>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>FLUOROQUINOLONES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin<sup>6,7,12,13</sup></td>
<td>500 mg PO 12 hourly</td>
<td>D</td>
<td>500 PO 12 hourly</td>
<td>50-75% of usual dose 12 hourly</td>
<td>250 mg PO 12 hourly</td>
</tr>
<tr>
<td></td>
<td>400 mg IV 12 hourly</td>
<td></td>
<td>400 mg IV 12 hourly</td>
<td>50-75% of usual dose 12 hourly</td>
<td>200 mg IV 12 hourly</td>
</tr>
<tr>
<td>PENICILLINS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampicillin<sup>2,6,13,14</sup></td>
<td>12 g/day IV in 4-6 equally divided doses</td>
<td>I</td>
<td>12 g/day IV in 4-6 equally divided doses</td>
<td>2 g IV 6 to 12 hourly</td>
<td>2 g IV 12 to 24 hourly</td>
</tr>
</tbody>
</table>

¹ Estimated CrCl (ml/min): > 50-90 | 10-50 | < 10

² Drug name

³ Method: PO = Oral; IV = Intravenous

⁴ HD: Hemodialysis; CAPD: Continuous Ambulatory Peritoneal Dialysis; CVVH: Continuous Venovenous Hemofiltration; CAVHD: Continuous Arteriovenous Hemofiltration; CVVHD: Continuous Venovenous Hemodialfiltration; CVVHDF: Continuous Venovenous Hemodiafiltration
<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose for normal renal function</th>
<th>Method</th>
<th>Adjustment for renal failure Estimated CrCl (ml/min)</th>
<th>Dose in patients undergoing renal replacement therapies</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin (AM) + Sulbactam (SB) (IV 2:1)</td>
<td>3 g IV 6 hourly</td>
<td></td>
<td>> 50-90</td>
<td></td>
<td>HD: 3 g 12 to 24 hourly; give post-dialysis on dialysis days</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10-50</td>
<td></td>
<td>CVVH: Initial 3 g then 3 g 8 to 12 hourly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 10</td>
<td></td>
<td>CVVHD: Initial 3 g then 3 g 8 hourly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CVVHDF: Initial 3 g then 3 g daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HD: Dosage adjustment not needed</td>
</tr>
<tr>
<td>Cloxacillin</td>
<td>2 g IV 4 hourly</td>
<td>-</td>
<td>2 g IV 4 hourly</td>
<td>2 g IV 4 hourly</td>
<td>HD: Dosage adjustment not needed</td>
</tr>
<tr>
<td>Benzyl Penicillin (Crystalline Penicillin)</td>
<td>3-4 MU IV 4-6 hourly</td>
<td>D</td>
<td>100%</td>
<td>75% of normal dose</td>
<td>HD: up to 2 MU 4 to 6 hourly; give post-dialysis on dialysis days</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20-50% of normal dose (See comments)</td>
<td>or supplement with 500,000 units post-dialysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Increased risk of neurotoxicity (seizures) in renal impairment</td>
</tr>
<tr>
<td>MISCELLANEOUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daptomycin</td>
<td>10 mg/kg IV daily</td>
<td>I</td>
<td>10 mg/kg IV daily</td>
<td>CrCl < 30: 10 mg/kg IV 48 hourly</td>
<td>HD/PD: Dose as in CrCl < 30 (give post-dialysis on dialysis days) or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>normal dose after HD 3x/week</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Monitor creatine phosphokinase (CPK)</td>
</tr>
<tr>
<td>Drug</td>
<td>Dose for normal renal function</td>
<td>Method</td>
<td>Adjustment for renal failure</td>
<td>Dose in patients undergoing renal replacement therapies</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------</td>
<td>--------</td>
<td>------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| Vancomycin | 15 mg/kg 12 hourly based on ABW; not to exceed 2 g/day unless serum levels are monitored | D & I | Start with 15-20 mg/kg 8-12 hourly | HD: LD then either 500 mg-1 g or 5-10 mg/kg after each HD session based on serum concentrations. Measure pre-HD serum level before 3rd HD session. Consider redosing for vancomycin pre-HD levels as follows:
 - < 10 mg/l give 1000 mg
 - 10-25 mg/l give 500-750 mg
 - > 25 mg/l hold
 Consider redosing for vancomycin post-HD levels < 10-15 mg/l give 500-1000 mg PD (via PD fluid): 15-30 mg/l of PD fluid PD (systemic): LD of 1 g then 500 mg-1 g 48 to 72 hourly (monitor levels closely) CVVH: LD 15-25 mg/kg then either 1 g 48 hourly or 10-15 mg/kg 24 to 48 hourly | • In the critically ill patient with renal insufficiency, the initial LD (25-30 mg/kg) should not be reduced. Make subsequent dose adjustment based on renal function and trough serum concentrations.
• Trough level monitoring:
> Trough levels are most accurate and practical (unless ESRD on HD).
> Trough levels should be obtained approximately 30 minutes of the next dose before the 4th dose.
> Once weekly monitoring is recommended for patients with stable renal function. |
| | | | CrCl 20-49: start with 15-20 mg/kg daily | CrCl < 20: will need longer intervals; determine by serum concentration monitoring | • Trough level monitoring:
> Trough levels are most accurate and practical (unless ESRD on HD).
> Trough levels should be obtained approximately 30 minutes of the next dose before the 4th dose.
> Once weekly monitoring is recommended for patients with stable renal function. |
<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose for normal renal function</th>
<th>Method</th>
<th>Adjustment for renal failure Estimated CrCl (ml/min)</th>
<th>Dose in patients undergoing renal replacement therapies</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>> 50-90</td>
<td>10-50</td>
<td>< 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rifampicin²³,²⁴</td>
<td>300-450 mg PO 12 hourly</td>
<td>D</td>
<td>No dose adjustment</td>
<td>CrCl ≤ 50 ml/min: 50-100% of the full dose</td>
<td>HD: Normal dose with no supplement after dialysis
PD: 50-100% of the full dose, with an extra 50-100% of the full dose after PD
CRRT: Dose as in normal renal function</td>
</tr>
<tr>
<td>Amphotericin B deoxycholate²⁵</td>
<td>0.6-1 mg/kg/day IV</td>
<td>I</td>
<td>Avoid; if essential use normal dose (see Comments)
If renal dysfunction is due to drug, the daily total can be decreased by 50% or the dose can be given every other day.</td>
<td>HD/CRRT: If essential use normal dose</td>
<td>Amphotericin is nephrotoxic; monitor serum creatinine closely; lipid formulations are less nephrotoxic</td>
</tr>
<tr>
<td>Drug</td>
<td>Dose for normal renal function</td>
<td>Method</td>
<td>Adjustment for renal failure</td>
<td>Dose in patients undergoing renal replacement therapies</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Amphotericin B lipid complex²,¹³,²⁶</td>
<td>3-5 mg/kg IV daily</td>
<td>-</td>
<td>> 50-90</td>
<td>3-5 mg/kg IV daily</td>
<td>HD/PD/CRRT: 3-5 mg/kg IV daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10-50</td>
<td>3-5 mg/kg IV daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 10</td>
<td>3-5 mg/kg IV daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HD/PD/CRRT: Dose as in normal renal function</td>
<td>Amphotericin may be nephrotoxic; monitor serum creatinine closely</td>
<td></td>
</tr>
<tr>
<td>Anidulafungin²⁷-²⁹</td>
<td>200 mg IV daily</td>
<td>-</td>
<td>> 50-90</td>
<td>200 mg IV daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10-50</td>
<td>200 mg IV daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 10</td>
<td>200 mg IV daily</td>
<td></td>
</tr>
<tr>
<td>Caspofungin²⁹-³¹</td>
<td>150 mg IV daily</td>
<td>-</td>
<td>> 50-90</td>
<td>150 mg IV daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10-50</td>
<td>150 mg IV daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 10</td>
<td>150 mg IV daily</td>
<td></td>
</tr>
<tr>
<td>Fluconazole²⁸,²⁹,³２,³３</td>
<td>400-800 mg (6-12 mg/kg) IV/PO daily</td>
<td>D</td>
<td>> 50-90</td>
<td>LD of 400 mg then 50% of normal dose</td>
<td>HD: 100% of daily dose after each dialysis session; on non-dialysis days patient should receive a reduced dose according to CrCl PD: Dose as for CrCl < 10 CVH: LD of 400-800 mg then 200-400 mg daily CVHD/CVHD: Dose as in normal renal function</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10-50</td>
<td>LD of 400 mg then 50% of normal dose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 10</td>
<td>LD of 400 mg then 50% of normal dose</td>
<td></td>
</tr>
<tr>
<td>Drug</td>
<td>Dose for normal renal function</td>
<td>Method</td>
<td>Adjustment for renal failure Estimated CrCl (ml/min)</td>
<td>Dose in patients undergoing renal replacement therapies</td>
<td>Comments</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------</td>
<td>--------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Flucytosine<sup>29,34</sup></td>
<td>25 mg/kg PO 6 hourly</td>
<td>I</td>
<td>> 50-90 25 mg/kg PO 6 hourly CrCl 20-40: 12.5 mg/kg PO 6 hourly</td>
<td>HD: 25 mg/kg 48 to 72 hourly</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10-50 CrCl 10-20: 6.25 mg/kg PO 6 hourly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micafungin<sup>29,35</sup></td>
<td>150 mg IV daily</td>
<td>-</td>
<td>> 50-90 150 mg IV daily CrCl 20-40: 12.5 mg/kg PO 6 hourly</td>
<td>HD: No supplemental or dose adjustment necessary</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10-50 150 mg IV daily CrCl 10-20: 6.25 mg/kg PO 6 hourly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 10 150 mg IV daily</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 9: Antimicrobial dosing in children with renal impairment

Estimating creatinine clearance in paediatrics

There are 2 methods to calculate CrCl in children. Available data suggest that the bias of Schwartz calculated glomerular filtration rate (eGFR) increases at lower levels of GFR. The Schwartz and Counahan-Barratt formulae can provide rapid and convenient estimates of GFR, although clinicians should be aware of their imprecision in this setting.1

Schwartz Method:1,2

\[
\text{CrCl (ml/min)} = \frac{k \times \text{Height in cm}}{\text{Serum Creatinine (µmol/l)}}
\]

*k is a constant that varies with age and gender (see the following table):1

<table>
<thead>
<tr>
<th>Age</th>
<th>k value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preterm infants</td>
<td>29.2</td>
</tr>
<tr>
<td>Full-term infants</td>
<td>39.8</td>
</tr>
<tr>
<td>Children 2-12 years old</td>
<td>48.6</td>
</tr>
<tr>
<td>Adolescent females 13-21 years old</td>
<td>48.6</td>
</tr>
<tr>
<td>Adolescent males 13-21 years old</td>
<td>61.9</td>
</tr>
</tbody>
</table>

Counahan-Barratt:1,3

\[
\text{GFR (ml/min/1.73m}^2) = \frac{38 \times \text{Height in cm}}{\text{Serum Creatinine (µmol/l)}}
\]

Ideal body weight table for paediatric and young adults4

Infants aged 0-24 months old (mo)

<table>
<thead>
<tr>
<th>Age</th>
<th>0-6 mo</th>
<th>6-12 mo</th>
<th>12-24 mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boys</td>
<td>(\text{WT}i = 0.733 A{mo} + 3.6)</td>
<td>(\text{WT}i = 0.433 A{mo} + 5.4)</td>
<td>(\text{WT}i = 0.183 A{mo} + 8.4)</td>
</tr>
<tr>
<td>Girls</td>
<td>(\text{WT}i = 0.667 A{mo} + 3.4)</td>
<td>(\text{WT}i = 0.400 A{mo} + 5.0)</td>
<td>(\text{WT}i = 0.183 A{mo} + 7.6)</td>
</tr>
</tbody>
</table>

Children and young adults aged 2-20 years (yr)

<table>
<thead>
<tr>
<th>Age</th>
<th>2-10 yr</th>
<th>10-16 yr</th>
<th>16-20 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boys</td>
<td>(\text{WT}i = 2.25 A{yr} + 8.50)</td>
<td>(\text{WT}i = 5.00 A{yr} + 19.0)</td>
<td>(\text{WT}i = 2.25 A{yr} + 25)</td>
</tr>
<tr>
<td>Girls</td>
<td>(\text{WT}i = 2.38 A{yr} + 7.25)</td>
<td>(\text{WT}i = 3.17 A{yr} + 3.33)</td>
<td>(\text{WT}i = A{yr} + 38)</td>
</tr>
</tbody>
</table>

Note: All doses recommended are for the treatment of infective endocarditis only. *WT: ideal body weight (kg); \(A_{mo}\): age in months; \(A_{yr}\): age in years.
Antimicrobial doses in paediatrics with renal impairment

<table>
<thead>
<tr>
<th>Drug</th>
<th>Age</th>
<th>Dose for normal renal function</th>
<th>Method</th>
<th>Adjustment for renal failure Estimated GFR (ml/min)</th>
<th>Dose in patients undergoing renal replacement therapies</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMINOGLYCOSIDES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin(^{5,7})</td>
<td>Infants, children and adolescents</td>
<td>1 mg/kg IV 8 hourly</td>
<td>D & I</td>
<td>> 50-90</td>
<td>10-50</td>
<td>< 10</td>
</tr>
</tbody>
</table>

All ages, give first dose as above and await plasma level result before further dosing. If trough level is still high after 36 hours consider reducing dose.

Blood levels/TDM:
- Take level 6 hours before 3\(^{rd}\) dose (6 hours before 2\(^{nd}\) dose if renal function is unstable). Repeat daily until stable then every 3 doses.
- Pre-dose (‘trough’) concentration
 - > 2 µmol/ml (< 1 mcg/ml for paediatrics)
 - > 4 µmol/ml (< 2 mcg/ml for NICU/ PICU)
- Re-dose patient at 24 hours if trough level achieved (at 36 hours if on 36 hour dosing). If trough is high, recheck level 12 hours after that level was taken and re-dose after that if level now in range. Dosing adjustment is to avoid accumulation, but do not delay at the detriment of not treating the patient.
- In very overweight or grossly oedematous patients, use lean body weight for calculating dose.
<table>
<thead>
<tr>
<th>Drug</th>
<th>Age</th>
<th>Dose for normal renal function</th>
<th>Method</th>
<th>Adjustment for renal failure Estimated GFR (ml/min)</th>
<th>Dose in patients undergoing renal replacement therapies</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEPHALOSPORINS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefazolin</td>
<td>Infants, children and adolescents</td>
<td>100 mg/kg/day IV in 3 equally divided doses</td>
<td>D & I</td>
<td>GFR 40-70: Normal initial dose then 60% of total daily dose given in 2 equal doses</td>
<td>GFR 20-40: Normal initial dose then 25% of total daily dose given in 2 equal doses; GFR 5-20: Normal initial dose then 10% of total daily dose daily</td>
<td>25 mg/kg IV daily; HD/PD: 25 mg/kg IV daily; CRRT: 25 mg/kg IV 8 hourly</td>
</tr>
<tr>
<td>Cefepime</td>
<td>Infants, children and adolescents</td>
<td>50 mg/kg IV 8 hourly (Max. single dose 2 g)</td>
<td>D & I</td>
<td>Normal dose</td>
<td>25-50 mg/kg IV 12 to 18 hourly</td>
<td>25-50 mg/kg IV daily; HD: LD of 25-50 mg/kg IV on Day 1 then 12.5-25 mg/kg IV daily; dose after HD or give supplemental same dose after HD session PD: Normal dose daily CRRT: Normal dose 12 hourly</td>
</tr>
<tr>
<td>Drug</td>
<td>Age</td>
<td>Dose for normal renal function</td>
<td>Method</td>
<td>Estimated GFR (ml/min)</td>
<td>Adjustment for renal failure</td>
<td>Dose in patients undergoing renal replacement therapies</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>--------</td>
<td>------------------------</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>Infants, children and adolescents</td>
<td>100 mg/kg IV once daily</td>
<td>-</td>
<td>> 50-90</td>
<td>Normal dose</td>
<td>Normal dose</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>Infants, children and adolescents</td>
<td>200-300 mg/kg/day IV in 4-6 equally divided doses (max. 12 g/day)</td>
<td>I</td>
<td>10-50</td>
<td>GFR 10-30: Normal dose 6 to 12 hourly</td>
<td>Normal dose 12 hourly; dose after HD or give supplemental same dose after HD session CVVH: Normal LD then normal dose 8 to 12 hourly CVVHD: Normal LD then normal dose 8 hourly CVVHDF: Normal LD then normal dose 6 to 8 hourly</td>
</tr>
<tr>
<td>Drug</td>
<td>Age</td>
<td>Dose for normal renal function</td>
<td>Method</td>
<td>Adjustment for renal failure Estimated GFR (ml/min)</td>
<td>Dose in patients undergoing renal replacement therapies</td>
<td>Comments</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--------------------------------</td>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ampicillin (AM) + Sulbactam (SB) (IV 2:1)</td>
<td>Infants, children and adolescents < 40 kg</td>
<td>200-300 mg AM/kg/day IV in 4-6 equally divided doses</td>
<td>I</td>
<td>> 50-90: Normal dose 10-50: Normal dose < 10: Normal dose daily</td>
<td>HD: Normal dose 12 hourly; CVVH: Max dose as LD then normal dose 8 to 12 hourly; CVVHD: Max dose as LD then normal dose 8 hourly; CVVHDF: Max dose as LD then normal dose 6 to 8 hourly</td>
<td>Dose expressed as AM component</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Normal dose daily</td>
</tr>
<tr>
<td>Cloxacillin18</td>
<td>Children and adolescents</td>
<td>200-300 mg/kg/day IV in 4-6 equally divided doses (max. 2 g/dose)</td>
<td>-</td>
<td>> 50-90: Normal dose 10-50: Normal dose < 10: Normal dose daily</td>
<td>HD: Dosage adjustment not needed</td>
<td>Dose in patients undergoing renal replacement therapies</td>
</tr>
<tr>
<td>Drug</td>
<td>Age</td>
<td>Dose for normal renal function</td>
<td>Method</td>
<td>Estimated GFR (ml/min)</td>
<td>Dose in patients undergoing renal replacement therapies</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>---------------------------------</td>
<td>--------</td>
<td>------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Benzyl Penicillin<sup>6,10,19</sup> (Crystalline Penicillin)</td>
<td>Infants, children and adolescents</td>
<td>200,000-300,000 units/kg/day IV in 4-6 equally divided doses</td>
<td>I</td>
<td>> 50-90</td>
<td>HD: Normal dose 8 to 12 hourly; give after dialysis on dialysis days CAVH/CVVH/CVVHD: Normal dose 8 to 12 hourly</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10-50</td>
<td>Normal dose 8 to 12 hourly</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 10</td>
<td>Normal dose 12 hourly</td>
<td></td>
</tr>
<tr>
<td>MISCELLANEOUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daptomycin<sup>10,20</sup></td>
<td>Children ≥ 2 years and adolescents</td>
<td>10 mg/kg IV daily</td>
<td>I</td>
<td>GFR 10-29: 67% of full dose daily</td>
<td>HD/PD: 67% of full dose 48 hourly after dialysis</td>
<td>In paediatric patients, daptomycin is not routinely used as a 1st line therapy. Avoid using in < 12 months due to musculoskeletal, neuromuscular and nervous system adverse effects.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Normal dose GFR 10-29: 67% of full dose daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Normal dose GFR 10-29: 67% of full dose 48 hourly</td>
<td></td>
</tr>
<tr>
<td>Drug</td>
<td>Age</td>
<td>Dose for normal renal function</td>
<td>Method</td>
<td>Adjustment for renal failure Estimated GFR (ml/min)</td>
<td>Dose in patients undergoing renal replacement therapies</td>
<td>Comments</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>Infants, children and adolescents</td>
<td>40-60 mg/kg/day IV in 2-3 equally divided doses (Initial dose is based on actual body weight; subsequent dosing based on serum trough levels)</td>
<td>Doses should be reduced in renal failure according to blood levels • Trough level monitoring: > Only give subsequent doses when vancomycin level reaches trough target > Therapeutic level: Trough 7-10 umol/l (10-15 mg/l) or 10-14 umol/l (15-20 mg/l) > Trough levels should be obtained approximately 30 minutes of the next dose > Approx. time to steady state 1-2 days > Peak levels are not usually required</td>
<td>> 50-90 10-50 < 10</td>
<td>HD/CAPD: 10 mg/kg IV as needed per serum concentration monitoring CRRT: 10 mg/kg IV 12 to 24 hourly, monitoring serum concentration</td>
<td></td>
</tr>
<tr>
<td>Rifampicin</td>
<td>Children and adolescents</td>
<td>20 mg/kg/day PO in 3 divided doses (max. 900 mg/day)</td>
<td>D Normal dose Normal dose Normal dose</td>
<td></td>
<td></td>
<td>HD/CAPD/CRRT: Normal dose</td>
</tr>
<tr>
<td>Drug</td>
<td>Age</td>
<td>Dose for normal renal function</td>
<td>Method</td>
<td>Adjustment for renal failure Estimated GFR (ml/min)</td>
<td>Dose in patients undergoing renal replacement therapies</td>
<td>Comments</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>-------------------------------</td>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ANTIFUNGALS</td>
<td></td>
<td></td>
<td></td>
<td>> 50-90</td>
<td>10-50</td>
<td>< 10</td>
</tr>
<tr>
<td>Amphotericin B deoxycholate<sup>22,24</sup></td>
<td>Infants, children and adolescents</td>
<td>After test dose 1 mg/kg IV daily</td>
<td>–</td>
<td>Avoid; use normal dose if only no alternative (see Comments) If renal dysfunction is due to drug, the total daily dose can be decreased by 50% or the dose can be given every other day</td>
<td>HD/PD/CRRT: If essential use normal dose</td>
<td>Amphotericin is nephrotoxic; monitor serum creatinine closely; lipid formulations are less nephrotoxic.</td>
</tr>
<tr>
<td>Amphotericin B lipid complex<sup>22,25</sup></td>
<td>Infants, children and adolescents</td>
<td>3-5 mg/kg IV daily</td>
<td>–</td>
<td>No dosage adjustment required in pre-existing renal failure.</td>
<td>HD/PD/CRRT: Normal dose; consider standard amphotericin due to cost</td>
<td>Amphotericin is highly nephrotoxic; monitor serum creatinine closely.</td>
</tr>
<tr>
<td>Fluconazole<sup>6,7,10,22,26</sup></td>
<td>Infants, children and adolescents</td>
<td>6-12 mg/kg PO/IV daily</td>
<td>D</td>
<td>Normal dose then 50% of normal dose daily</td>
<td>Normal LD then 50% of normal dose 48 hourly</td>
<td>HD: 100% of normal dose 3x/week after HD session or 50% of normal dose every 48 hours; administer after dialysis on dialysis days PD: 50% of normal dose 48 hourly CRRT: 6 mg/kg/dose daily</td>
</tr>
<tr>
<td>Drug</td>
<td>Age</td>
<td>Dose for normal renal function</td>
<td>Method</td>
<td>Adjustment for renal failure Estimated GFR (ml/min)</td>
<td>Dose in patients undergoing renal replacement therapies</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------</td>
<td>--------------------------------</td>
<td>--------</td>
<td>--</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>Flucytosine<sup>6,10,27</sup></td>
<td>Infants, children and adolescents</td>
<td>150 mg/kg/day PO in 4 equally divided doses</td>
<td>-</td>
<td>Normal dose GFR 30-50: 25-37.5 mg/kg/dose 8 hourly GFR 10-29: 25-37.5 mg/kg/dose 12 hourly GFR < 10: 25-37.5 mg/kg/dose daily</td>
<td>HD/PD: 25-37.5 mg/kg/dose daily CRRT: 25-37.5 mg/kg/dose 8 hourly</td>
<td></td>
</tr>
</tbody>
</table>
References:

Appendix 10: Weekly OPAT review checklist (for doctors)

<table>
<thead>
<tr>
<th>General review of the patient and clinical examination (specifically look for)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart failure</td>
</tr>
<tr>
<td>Embolic events</td>
</tr>
<tr>
<td>Recurrence of fever or worsening of other septic parameters</td>
</tr>
<tr>
<td>New neurological signs or symptoms</td>
</tr>
<tr>
<td>Ask about side effects of antimicrobials such as rash</td>
</tr>
<tr>
<td>To check compliance of patient/difficulties faced with vascular device</td>
</tr>
<tr>
<td>To check branula/peripherally inserted central catheter (PICC) line for evidence of thrombophlebitis</td>
</tr>
<tr>
<td>To check on control of co-morbidities such as diabetes and hypertension</td>
</tr>
<tr>
<td>Baselines blood investigations such as FBC, CRP, RP and LFT</td>
</tr>
<tr>
<td>Review the planned duration of antimicrobials</td>
</tr>
<tr>
<td>To ensure antimicrobials are ordered up to next hospital appointment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECG</td>
</tr>
<tr>
<td>Therapeutic drug monitoring</td>
</tr>
<tr>
<td>INR</td>
</tr>
<tr>
<td>Echocardiogram</td>
</tr>
</tbody>
</table>
Appendix 11: Clinical indicators

Performance measures for this CPG is to monitor the implementation of these guidelines with the aim of achieving the following within 5 years.

<table>
<thead>
<tr>
<th>Performance indicators</th>
<th>Yes</th>
<th>No</th>
<th>Target to achieve in 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decrease in the mortality caused by IE:</td>
<td></td>
<td></td>
<td>By 50%</td>
</tr>
<tr>
<td>Number of deaths of IE patients due to IE or its complications over a given time frame</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of patients diagnosed with IE over the same time frame x 100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgery performed within 24 hours for patients with emergency indication (as per the guidelines):</td>
<td></td>
<td></td>
<td>50%</td>
</tr>
<tr>
<td>Number of IE patients requiring emergency surgery receiving surgery within 24 hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of IE patients requiring emergency surgery x 100%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

178

ACKNOWLEDGEMENT

The members of the CLINICAL PRACTICE GUIDELINES FOR THE PREVENTION, DIAGNOSIS & MANAGEMENT OF INFECTIVE ENDOCARDITIS development committee would like to express their gratitude and appreciation to the following for their contribution:

- Panel of external (local and international) reviewers who reviewed and contributed their expert feedback on the draft copy.
- Technical Advisory Committee, Clinical Practice Guidelines, Ministry of Health, Malaysia for their valuable input and feedback.
- Dr. Mohd Aminuddin Mohd Yusof of the Health Technology Assessment unit of Ministry of Health, Malaysia for his guidance throughout the process.
- Mediconnexions Consulting Sdn Bhd for taking on the secretariat role.
- All those who have contributed directly or indirectly to the development of this CPG.

DISCLOSURE STATEMENT

The panel members have no potential conflict of interest to disclose. None hold shares in pharmaceutical firms or act as consultants to such firms.

SOURCES OF FUNDING

The development of the Clinical Practice Guidelines on the prevention, diagnosis and management of IE was supported in its entirety by the National Heart Association of Malaysia (NHAM) and was developed without the involvement of the pharmaceutical industry.
National Heart Association of Malaysia
Level 1, Heart House
Medical Academies of Malaysia
210, Jalan Tun Razak
50400 Kuala Lumpur
Malaysia