RATIONAL ANTIBIOTIC UTILISATION IN SELECTED PEDIATRIC CONDITIONS
EXPERT COMMITTEE

1. Dr Tan Kar Kee Chairman
 Consultant Paediatric
 Seremban Hospital

2. Dr Hung Liang Choo
 Consultant Paediatric
 Kuala Lumpur Hospital

3. Dr Wan Jazilah Wan Ismail
 Consultant Paediatric
 Institute Paediatric
 Kuala Lumpur Hospital

4. Dr N Nachal
 Consultant paediatric
 Tengku Ampuan Rahimah Klang Hospital

5. Dr N Jeyaseelan
 Consultant Paediatric
 Seremban Hospital

Project Coordinators

1. Dr S Sivalal
 Deputy Director
 Medical Development Division
 Ministry of Health Malaysia

2. Dr Rusilawati Jaudin
 Assistant Principle Director
 Health Technology Assessment Unit
 Medical Development Division
 Ministry of Health Malaysia

3. Ms Sin Lian Thye
 Nursing Sister
 Health Technology Assessment Unit
 Medical Development Division
 Ministry of Health Malaysia
EXECUTIVE SUMMARY

The wide use of antibiotics has been associated with increasing antimicrobial resistance, both in the community and hospital settings. Multi-resistant organisms such as extended spectrum beta lactamase (ESBL)-producing Klebsiella pneumoniae and Escherica coli, Glycopeptide-resistant Staphylococcus aureus, Vancomycin-resistant Enterococcus (VRE) and also multi-resistant Acinetobacter (including Carbapenem-resistant isolates) have appeared worldwide, although the prevalence varies in different countries.

Patient care is threatened by treatment failures arising from infection of organisms leading to morbidity and potential mortality. The treatment of these infections is hampered by the lack of efficacious antibiotics, especially for multi-resistant gram-negative organisms like Acinetobacter and Pseudomonas aeruginosae. Furthermore, widespread abuse and overuse of antibiotics result in potential drug toxicities leading to increased complications as well as increased healthcare costs.

The objective is to determine the safety, effectiveness, and cost implications of rational antibiotic utilisation in selected pediatric conditions like Febrile Neutropenia, Encephalitis/Encephalopathy/Meningitis, Pneumonia, Sepsis in Children, and Neonatal Sepsis

For Febrile neutropenia, there is sufficient evidence to recommend the use of either monotherapy or combination therapy antibiotics, using a third or fourth generation Cephalosporin, and Beta-lactam agent and an Aminoglycoside respectively. However, there is scanty data regarding utility of empiric antifungal therapy and no good evidence to support the practice of routine antiviral therapy in neutropenic children with cancer and so routine antifungal or antiviral therapy at the onset of febrile neutropenia is not recommended. There is limited data regarding cost-effectiveness of different antibiotic regimens in the treatment of febrile neutropenia.

As for Meningitis and Encephalitis, there is sufficient evidence of the effectiveness of third generation Cephalosporins to treat Haemophilus influenza meningitis type b and Streptococcus meningitis. There is evidence of Dexamethasone used with antibiotics reduces hearing loss in Haemophilus influenza meningitis. However, there is no evidence of effectiveness of antibiotics in viral encephalitis, except the use of Acyclovir in Herpes encephalitis.

In community acquired pneumonia, there is inadequate data on the effectiveness of various different antibiotics but there is some evidence to recommend the use of Azithromycin, Amoxicillin Clavulanate, Erythromycin and Cefuroxime, in the outpatient treatment of pneumonia. There was insufficient evidence on adverse effects and costing, there is inadequate data to support. The macrolides may have a role in the older child and for the inpatient treatment of Pseudomonas Community Acquired Pneumonia the Penicillin group of drugs may be used.
In treatment of sepsis in children, there is no evidence to support the use of specific antibiotics, although the commonly used antibiotics were found to be Cefuroxime, Metronidazole, Gentamycin and Ampicillin. It was found that there is good evidence to support the use of Polyclonal Intravenous Immunoglobulin as adjuvant treatment for sepsis and septic shock.

There is evidence to recommend the use of Ampicillin, Aminoglycosides, Cephalosporins and Vancomycin in the treatment of neonatal sepsis, there is inconclusive evidence on the appropriate duration of antibiotics. Penicillin is recommended for Group B Streptococcus, while Liposomal Amphotericin B is recommended in Candidiasis, Gentamycin can be given on a once daily dose where indicated. Vancomycin, Penicillin and Teicoplanin can be used for prophylaxis. However, there is insufficient evidence on the use of prophylaxis in specific conditions and antibiotics of choice in specific conditions. There is also insufficient evidence, to support the use of antiviral agents in various conditions, except for evidence of effectiveness of Acyclovir in Herpes simplex infection and neonatal Varicella infection. Insufficient evidence was also obtained on and regards to safety and cost effectiveness of antibiotics in neonates.
TABLE OF CONTENT

1 **BACKGROUND**
2 **OBJECTIVES**
3 **TECHNICAL FEATURES**
 3.1 Febrile Neutropenia
 3.2 Meningitis and Encephalitis
 3.2.1 Bacterial meningitis
 3.2.2 Encephalitis
 3.3 Pneumonia
 (a) Eiological Agents Paediatric Community Acquired Pneumonia (PCAP)
 (b) Bacteria etiological agents
 (c) Viral etiological agents
 (d) Multiple etiological agents
 (e) Distribution of etiological agents across age groups
 3.4 Sepsis in Children
 3.5 Neonates Sepsis
4 **METHODOLOGY**
 4.1 Febrile Neutropenia
 4.2 Meningitis and Encephalitis
 4.3 Sepsis in Children
 4.4 Neonates Sepsis
5 **RESULTS**
 5.1 Febrile Neutropenia
 5.1.1 Effectiveness
 (a) Antimicrobial agents
 5.1.2 Cost
 5.2 Meningitis and Encephalitis
 5.2.1 Effectiveness of antibiotic use
 (a) Haemophilus influenza meningitis
 (b) Streptococcus pneumonia meningitis
 (c) Neisseria meningitides meningitis
 (d) Encephalitis
 5.2.2 Adjuvant Dexamethasone administration in bacterial meningitis
 5.3 Community Acquired Pneumonia
 5.3.1 Effectiveness
 (a) Empirical treatment
 (b) Pneumonia due to Pneumococcus/Streptococcus / Haemophilus
 (c) Penicillin resistant Streptococcus pneumoniae
 (d) Mycoplasma Pneumoniae and Chlamydia Pneumoniae
5.3.2 Safety 14
5.3.3 Costing 14
5.3.4 Local situation 14
5.4 Sepsis in Children 15
5.4.1 Community acquired bacterial sepsis in previously healthy children 15
5.4.2 Nosocomial sepsis 15
5.4.3 Adjuvant therapy 15
5.5 Neonatal Sepsis 16
5.5.1 Use of antimicrobials 16
5.5.2 Dosing of antibiotics 16
 (i) Gentamicin 16
 (ii) Vancomycin 17
 (iii) Amikacin 17
5.5.3 Duration of antibiotics 17
5.5.4 Prophylactic antibiotics 17
 (i) Vancomycin 17
 (ii) Penicillin 17
 (iii) Teicoplanin 17
5.5.5 Prophylaxis in specific conditions 17
 (i) Necrotising Entero-Colitis (NEC) 17
 (ii) Airway colonisation 18
 (iii) Parenteral Nutrition 18
 (iv) Catheter placement 18
5.5.6 Antibiotics of choice in specific conditions 18
 (i) Fulminant sepsis 18
 (ii) Sepsis in Tetanus 18
 (iii) Staphylococcus 18
 (iv) Group B Streptococcus 18
 (v) Gram negative bacteria 19
 (vi) Enterobacter cloaceae 19
 (vii) Klebsiella pneumonia 19
 (viii) Bacillus cereus 20
 (ix) Stenotrophomonas maltophilia 20
 (x) Morganella morganii 20
 (xi) Salmonella typhi 20
 (xii) Flavobacterium meningosepticum 20
 (xiii) Enterococci 20
 (xiv) Pseudomonas 20
 (xv) Ureaplasma urealyticum 21
 (xvi) Candidiasis 21
 (xvii) Aspergillosis 21
5.5.7 Use of Anti-virals 21
 (i) Respiratory syncytial virus infection 21
 (ii) Cytomegalovirus infection 21
 (iii) Herpes Simplex Virus Infection 21
(iv) Varicella Zoster
(v) Sepsis

5.5.8. Safety
5.5.9. Local situation
5.5.10. Cost

6 CONCLUSIONS
6.1 Febrile Neutropenias
6.2 Meningitis & Encephalitis
6.3 Community Acquired Pneumonia
6.4 Sepsis in children
6.5 Neonatal Sepsis

7 RECOMMENDATIONS
7.1 Febrile Neutropenia
7.2 Meningitis & Encephalitis
7.3 Community Acquired Pneumonia
7.4 Sepsis in children
7.5 Neonatal sepsis

REFERENCES

List of Table
Table 1 Etiology of childhood PCAP

Appendix
Appendix 1 Current local prices of commonly used antibiotics
Appendix 2 Prices of commonly used antibiotics in the Ministry of Health hospitals
Appendix 2: Level of Evidence Scale

EVIDENCE TABLE
1. BACKGROUND
The wide use of antibiotics has been associated with increasing antimicrobial resistance, both in the community and hospital settings (Swartz, 1997; Shales et al, 1997; Cohen et al, 1997). Multi-resistance organisms such as extended spectrum beta lactamase (ESBL)-producing Klebsiella pneumoniae and Escherica coli, Glycopeptide-resistant Staphylococcal aureus, Vancomycin-resistant Enterococcus (VRE) and also multiresistant Acinetobacter (including Carbapenem-resistant isolates) have appeared worldwide, although the prevalence varies in different countries.

Patient care is threatened by treatment failures arising from infection of organisms leading to morbidity and potential mortality (Tomasz, 1998; Gold et al, 1996; Gomez et al, 1999). The treatment of these infections is hampered by the lack of efficacious antibiotics, especially for multi-resistant gram-negative organisms like Acinetobacter and Pseudomona aeruginosae. Furthermore, widespread abuse and overuse of antibiotics result in potential drug toxicities leading to increased complications as well as increased healthcare costs.

2. OBJECTIVES
To determine the safety, effectiveness, and cost implications of rational antibiotic utilisation in selected pediatric conditions - Febrile Neutropenia, Encephalitis/Encephalopathy / Meningitis, Pneumonia, Sepsis in Children, and Neonatal Sepsis

3. TECHNICAL FEATURES
3.1 Febrile Neutropenia

Febrile neutropenia is a common consequence of anticancer chemotherapy. Cancer patients receiving myelosuppressive chemotherapy develop severe neutropenia and, consequently, are at high risk of developing life-threatening infections (Cometta et al, 1996; Charnas et al, 1997), and bacterial infections are a common cause of morbidity and mortality in such patients (Freifeld et al, 1997). These patients are at risk of endogenous flora infection, especially aerobic Gram-negative bacteria residing in the gastrointestinal tract and also those pathogens colonizing on normal or damaged mucosa or skin surfaces, namely Gram-negative bacilli such as Enterobacteriaceae, Klebsiella pneumoniae or Gram-positive cocci like Staphylococcus aureus, Staphylococcus epidermidis and Streptococcus viridans (Charnas et al, 1997, Patrick, 1997).

Since, febrile neutropenic patients fail to mount a full inflammatory response, and the currently available diagnostic tests are not sufficiently rapid, sensitive or specific for identifying or excluding the microbial cause of a febrile episode, they may have to be treated empirically The risk of infection increases 10-fold with declining neutrophil counts, so that infection rates rise from 0.5 infection per 100 days, with absolute neutrophil counts between 100 and 500/cubic mm, to 5 infections per 100 days, with absolute neutrophil counts of 100/cubic mm (Mustafa et al, 2001). Between 48 and 60%
of febrile neutropenic patients have an established or occult infection, and between 16
and 20% of those with neutrophil counts of <100/cubic mm have bacteremia (Hughes et al, 1997) The prompt institution of empiric antibiotic therapy for febrile neutropenic patients, has been shown to dramatically reduce their infection-related morbidity and mortality (Freifeld et al, 1997). Numerous clinical trials have demonstrated that empiric antibiotic regimens including potent antibiotic mono-therapies and antibiotic combinations may preserve the patient through the critical time of fever and neutropenia, (Freifeld et al, 1997).

In a study in University Hospital, Kuala Lumpur in children with febrile neutropenia Ceftazidime-resistant *Klebsiella pneumoniae* was seen in 51.6% of all bacteremic isolates, suggesting a high prevalence of ESBL-infections in that setting. (Ariffin et al, 2000)

3.2. **Meningitis and Encephalitis**

In children, acute infection of the central nervous system is the most common cause of fever associated with signs and symptoms related to the central nervous system. The specific causative pathogen depends on age and immune status of patients. While meningitis implies primary involvement of the meninges, and encephalitis indicates brain parenchymal involvement, in clinical practice, it may be extremely difficult to distinguish the two.

3.2.1 **Bacterial meningitis**

Bacterial meningitis in children aged between 2 months to 12 years is usually caused by *Haemophilus influenza* type B, *Streptococcus pneumoniae* or *Neisseria meningitidis* in Malaysia, Saudi Arabia, Philippines and many other countries in the South Asia and South East Asia. (Limcangco et al, 2000; Uduman et al, 2000; Lee, 1998; Hussein et al, 1998; Almuneef et al, 1998). Less common pathogens like *Pseudomonas aeruginosa*, *Staphylococcus aureus*, *Staphylococcus epidermidis*, *Salmonella* and *Listeria monocytogenes* can be involved if host defense mechanisms are altered. Developed countries like USA, United Kingdom, Canada, Greece, Italy Holland, and Taiwan, have reported a marked decline on the incidence of *Haemophilus influenza* meningitis (Gold, 1999, Dawson et al, 1999), with *Streptococcus pneumonia* being the leading cause of bacterial meningitis. In Hong Kong, *Mycobacterium bacteria* was the comment aetiological agent of meningitis, with very low incidence of *Haemophilus influenza* and *Meningococcal Meningitis* (Sung et al, 1997). In India, no cases of late onset group B *Streptococcus* disease were noted. This low incidence could be attributed to the low rate of colonisation and high prevalence of protective antibodies in mothers (Kuruvilla & Thomas, 1999).

3.2.2 **Encephalitis**

Viral encephalitis is characterized by pleocytosis with negative gram stain and negative culture of cerebral spinal fluid. The recent Viral Encephalitis (EV 71) outbreak in several parts of the world, including Taiwan and Malaysia highlights the demand for rapid and accurate diagnostic tests. (Liu et al, 2000; Monto Ho et al, 1999; Lum et al, 1998).
While the isolation of virus in cell culture is the mainstay of viral identification, such cultures have a low sensitivity (<75%), and are usually not available in time (Traller & Casas, 2000). Serology testing may be slow, usually requiring acute and convalescent samples (McMinn et al, 2001). PCR is superior to viral culture since it is accurate and more sensitive than viral culture. However, contamination in the laboratory may give rise to a false positive PCR result (Hsiung & Wary, 2001; Dannet et al, 1997).

Herpes simplex encephalitis is usually considered in the presence of a focal neurological finding on clinical examination. Diagnosis is established by the detection of *Herpes Simplex* Viral (HSV) DNA by PCR, considered the gold standard for the diagnosis of herpes simplex encephalitis (Sauerbrei et al, 2000; Atkins, 1999; Lahat et al, 1999; Dominique et al, 1998; McGrath N et al, 1997; Dennet et al, 1997). HSV DNA is readily detected during the first week, but declines during the second week. EEG and CT Scan of the brain are only supporting tests (Ito et al, 1998).

3.3 Pneumonia

Lower respiratory tract infection is a common cause of mortality and morbidity in children. In acute pneumonia, biopsy or needle aspiration of lung tissue are rarely carried out, because only a small fraction of children with pneumonia have bacteremia or pleural effusion. Apart from this, bacterial cultures of the nasopharynx or throat correlate poorly with cultures of lung tissue, while clinical and radiographic signs of viral, bacterial or mycoplasma etiology have little diagnostic value (Nelson, 2000). Antigen detection and specialized serologic techniques are thus used to confirm etiological agents. Hence, empiric treatment is necessary because definitive information about causative pathogens is seldom available (McCracken, 2000).

Eiological Agents Paediatric Community Acquired Pneumonia (PCAP)

In most studies pneumonia can be attributed to a specific etiology (Table 1) from culture, antigen detection and specialized serologic techniques. These had detected 87% and 85% respectively of the etiological agents (Gendrel et al, 1997; Juven et al, 2000).
Several large prospective studies have investigated the cause of PCAP in Europe and North America using serology alone or serology combined with culture and PCR to define etiology. The percentage of bacterial etiology was consistently higher than virus. (Table 1,) except in the study done by Juven et al, (2000.)

(b) Bacteria etiological agents

The most common bacteria are *Streptococcus pneumoniae* followed by *Mycoplasma pneumoniae* and *Chlamydia pneumoniae* (Table 1; Greenwood, 1999; McCracken, 2000). Patients with pneumonia were found more likely to have nasopharyngeal colonization with *S. pneumoniae* (Levine, 2000). Blood cultures are a poor investigation tool to detect the etiological agent (Table 1). However, in Vietnam, one study found that 71% positive blood culture in patients with pneumonia detected by using blood culture (Tran et al, 1998). Most studies used serological and blood culture markers to detect organisms (Heiskanen-Koma, 1998; Tran, 1998; Vouri, 1998; Drummond, 2000; Juven, 2000; Rowe, 2000; Wubbel, 1999). *Haemophilus influenzae* was found as a causative organism in some studies (Tran, 1998; Rowe, 2000; Juven, 2000; Yang, 1998). *Mycoplasma* and *Chlamydia* are the other common bacterial organisms (Wubbel et al, 1999; Chaudhry et al, 1998; Chugh, 1999; Heiskanen-Kosma et al, 1999). Differences in the incidence of *Mycoplasma* and *Chlamydia* can be affected by geographical location, season, and type of test used (Wubbel et al, 1999). It has also been found that a positive PCR for *Chlamydia pneumoniae* in the upper respiratory tract does not necessarily imply it be the etiological agent of a lower respiratory tract infection (Flack et al, 1997).

(c) Viral etiological agents

The commonest virus is *Respiratory syncytial virus* (RSV) (Heiskanen-Kosma et al, 1998; Wubbel et al, 1999; Juven et al, 2000; Sonoda et al, 1999; Videla, 1998; Hijazi, 1997). A local study also had a similar finding, 84% of the viruses being RSV (Chan et
al, 1999). Other viral agents detected were Parainfluenza, Influeza, Adenovirus (Juven et al, 2000; Chan et al, 1999).

(d) Multiple etiological agents
There have been serological evidence of more than one etiological agent - Wubbel et al, (1999) found 40% of those with S. pneumoniae had co-infection with C. pneumonia or M. Pneumonia viruses. Others studies also found similar bacterial-viral co-infection from 8-34% (Juven et al, 2000; Ruuskanen & Mertsola, 1999; Heiskanen-Kosma et al, 1998; Vouri et al, 1998). Bacterial–bacterial co-infection was found to be less common, only two studies found S pneumonia and M pneumonia (Heiskanen-Kosma et al, 1998, Toika et al, 2000).

(e) Distribution of etiological agents across age groups
Streptococcus pneumoniae infection rates were stable across all age groups (Juven et al, 2000; Heiskanen-Kosma et al, 1998; Wubbel et al, 1998), while Streptococcal pneumoniae was the most common bacterial cause of pneumonia under 2 years (Drummond et al, 2000). Most studies found that Chlamydia pneumoniae and Mycoplasma pneumoniae infections became more prevalent with increasing age, while C. pneumoniae was found to play a minor role in the aetiology of pneumonia in children less than 9 years of age (Martinez et al, 2000).

3.4 Sepsis in Children
The systemic response to infection and its management remains a major challenge in clinical medicine. Sepsis and septic shock constitute an important cause of morbidity and mortality in critically ill children, with approximately 2% of all hospitalized patients having sepsis. The outcome is affected by the causative agents, with infections due to Gram negative rods having a significantly higher mortality (25%) than gram-positive bacteria (10%) (Oda, 2000). In a study in Kuwait it was found that 52% of the 70 deaths in patients was due to nosocomial bacteremia (Jamal & El-Din, 1999).

Rapid identification of the causative agents in septicaemia is crucial for selecting appropriate antimicrobial agents. It has been suggested that Fluorescent in-situ hybridization (FISH) with ribosomal RNA targeted fluorescently labeled oligonucleotide probes be used for the rapid detection and identification of pathogens, without cultivation and biotyping (Kempf, 2000).

With respect to management, apart from antibiotic administration, most therapies are limited to being supportive strategies. Close attention to cardiovascular, respiratory, fluid and electrolytes, haematological, renal and metabolic/nutritional support is essential to optimize outcome. Fluid resuscitation is of utmost importance to overcome the hypovolaemia resulting from diffuse capillary leak.

3.5 Neonates Sepsis
Neonates, especially premature babies, are deficient in host defenses i.e. physical, cellular, humoral, and are thus predisposed to infection. They are also at risk of acquiring infections from mothers during the perinatal period. Infections disseminate very rapidly
in neonates, with septicaemic shock and death often occurring within 12 hours of the first sign of illness.

Consequently, early diagnosis and therapy initiated on the basis of clinical suspicion is important. Rapid identification of neonatal sepsis by various tests may allow early discharge, as well as reducing the cost of treatment and anxiety for family, apart from reducing the use of antibiotics (Anwer, 2000). The use of rapid identification systems like BACTEC® helps in the early identification of neonatal bacteremia (within 24-30 hours), with gram negative organisms being detected earlier than gram positive ones, thus allowing earlier diagnosis and appropriate treatment (Pauli et al, 1999).

The choice of antibiotics in neonates is difficult. The combinations of antibiotics used will depend on the organisms commonly isolated in that particular nursery. Changes in antibiotics can be made once the culture and sensitivity results are available. However, it needs to be borne in mind that the antibiotics used will have adverse effects on the resident bacterial flora in a neonatal unit. Thus, data on the aetiology of sepsis in the nursery need to be periodically reviewed to revise the antibiotic policy (Anwer, 2000). The diagnoses need to be reviewed at different stages of treatment, so that antimicrobial therapy is administered to only those neonates requiring them. This will also minimise the development of antibiotic resistant organisms. Apart from this, failure to respond to antimicrobials could imply either a non-infectious cause of illness or poor supportive management (Musoke, & Revathi, 2000).

Decisions to start antibiotics also need to be evaluated carefully. Thus, for example, fever in neonates needs to be evaluated carefully to avoid unnecessary empirical antibiotic therapy as it was found that even Hep B vaccination may cause an unexplained fever in neonates (Linder et al, 1999). A study evaluating newborns weighing more than 2 kg. for sepsis, found that the risk of bacterial infection in the asymptomatic infant is low. However, there was increased risk of infection with chorioamnionitis, low absolute neutrophil count and meconium-stained liquor (Escobar et al, 2000).

The appropriate antibiotics for the treatment of infections in neonates would vary from centre to centre as would the organisms causing the various infections. In Taiwan, it was found that Group B streptococcus had taken over E. Coli as being the leading cause of meningitis since 1991, and consequently, strategies to prevent such infections was recommended to be developed. (Chang Chien et al, 2000). On the other hand, in North Colombo, it was found that most late onset septicaemia was caused by nosocomial infections due to Klebsiella and Staph. aureus (Karunasekara & Pathirana, 1999). A Nigerian study found a high prevalence of neonatal bacterial sepsis, L. monocytogenes and a preponderance of multiple resistant organisms among neonates early in life (Ako Nal & Adejuyigbe, 1999).

In Malaysia, the most common organisms in late onset infections in very low birth weight infants were Klebsiella (38.3%), followed by coagulase-negative Staphylococcus (17.6%). The mortality rates were high in Klebsiella infections (46.9%) (Jacqueline Ho, 2001).
4. METHODOLOGY

4.1 Febrile Neutropenia
An electronic search of PUBMED database using various keywords and limits was carried out as follows.

(a) Keywords: “febrile neutropenia AND antibacterial antibiotics”
 Limits: 1997-2001
 Results: 156 citations, 42 relevant.

(b) Keywords: “febrile neutropenia AND antifungals”
 Limits: 1997-2001
 Results: 32 citations; 6 relevant

(c) Keywords: “febrile neutropenia AND antivirals”
 Limits: 1997-2001
 Results: 12 citations; none relevant

In addition, OVID full text search was carried out as follows:
(a) Keywords: “febrile neutropenia AND antibiotics”
 Results: 207 citations; 26 relevant

(b) Keywords: “febrile neutropenia”.
 Limits: English, Human, 1997-2001
 Results: 497 citations; 28 relevant.

4.2 Meningitis and Encephalitis
An electronic search of PUBMED database using various keywords and limits was carried out as follows.

(a) Keywords: "Bacterial meningitis AND children"
 Limits: 1997-2001, preschool, 6-12 years English
 Results: 434, 478, 475 citations

(b) Keywords: Meningoencephalitis AND children
 Limits: Infant, 1-23 months, 1997-2001,English, Human
 Preschool, 2-5 years, 1997-2001,English, Human
 Child, 6 to 12 years, 1997-2001, English, Human
 Results: 30, 43, 86 citations

(c) Keywords: Encephalitis AND children
 Limits: Preschool, 2-5 years, 1997-2001,English, Human
 Child, 6-12 years, 1997-2001, English, Human
Results: 460, 630 citations

(d) Keywords: Herpes Encephalitis AND children
Limits: Child, 6-12 years, 1997-2001, English, Human
Preschool, 2-5 years, 1997–2001, English, Human
Results: 21, 20 citations

4.3 Pneumonia
An electronic search of PUBMED database using various keywords and limits was carried out as follows.

Keywords: Pneumonia
Limits: All children 0-18yrs, 1997-2001, English
Results: 1082 title - 198 relevant, 19 abstracts and full papers reviewed

In addition, manual searches of the references of the 19 articles were made:
No. of references: 568 (1997 – 2001)
7 relevant titles, 2 abstracts reviewed and used

4.4 Sepsis in Children
An electronic search of PUBMED and COCHRANE Library databases using various keywords and limits was carried out as follows.

Limits: last 5 years
Inclusion criteria for selection of titles and abstracts:
- studies/papers on immuno-competent hospital in-patients or Paediatric Intensive Care Unit settings
Exclusion criteria: papers on immuno-compromised patients, high-risk patients like HIV, cancer and post-splenectomy patients, individual organism studies, specific antibiotic trials and catheter-related infections, and fungal infections were excluded.

PUBMED

(a) Keywords: Sepsis OR Septicemia AND antibiotics
Limits: 1 month to 23 months; 2 years - 5 years; 6 years - 12 years, 1997-2001, English, Human
Results: 197 citations, 104 relevant titles, 46 relevant abstracts, 5 articles used;
49 citations, 20 relevant titles, 11 relevant abstracts, 3 articles used
56 citations & relevant titles, 13 relevant abstracts, 2 articles used.

(b) Keywords: Bacteremia OR sepsis-syndrome AND antibiotics
Limits: 1 month to 23 months; 2 years - 5 years; 6 years -12 years; 1997-2001, English, Human
Results: 46 citations, 6 relevant titles, 5 relevant abstracts, 0 articles used
52 citations, 13 relevant titles, 9 relevant abstracts, 0 article used
49 citations, 38 relevant titles, 26 relevant abstracts, 0 article used.

(c) Keywords: Bacteraemia AND antibiotics
Limits: 1 month-23 months; 2 years - 5 years; 6 years - 12 years; 1997-2001, Human, English
Results: 20 citations, 0 relevant title. 19 citations, 1 irrelevant title, 1 relevant abstract, 0 article used 20 citations, 18 titles, 12 relevant abstracts, 1 article used.

(d) Keywords: Septiceamia AND antibiotics
Limits: 1 month-23 months; 2 years - 5 years; 6 years - 12 years; 1997-2001, Human, English
Results: 20 citations, 1 relevant title, 0 relevant abstract. 9 citations, 0 relevant title 12 citations, 0 relevant title.

(e) Keywords: Antibiotics AND pediatric intensive care
Limits: 1 month - 18 years, 1997-2001, Human, English, 44 citation, 34 relevant title, 4 relevant abstract, 3 article used.

COCHRANE Library:
(a) Keywords: Sepsis AND antibiotic
Results: 25 relevant hits, 0 relevant title

(b) Keyword: Antibiotic AND pediatric intensive care
Results: 25 most relevant hits, 0 relevant title.

(c) Keyword: Sepsis
Results: 25 relevant hits, 1 relevant title, 1 relevant abstract, 1 article used

Note: *Though the term septicaemia is obsolete, it was used in this search so as not to miss any article with this term*

4.5 Infection in neonates

An electronic search of PUBMED database using various keywords and limits of human, English, infants, newborns, 1997 -2001 was carried out as follows:

(a) Keywords: Neonates AND sepsis AND antibiotics
Results: 253 citations, 17 relevant titles, 3 paper reviews and 8 abstracts used.

(b) Keywords: Neonate* AND antibiotic*
Results: 1060 citations, 43 relevant titles, 10 abstracts used.

(c) Keywords: Neonates OR neonate AND antibiotics OR antibiotic
Results: 1239 citations, 186 relevant titles, 66 relevant abstracts, 11 papers and 44 abstracts used
(d) Keywords: Neonates OR neonate AND antibiotics OR antibiotic AND septicemia OR septicaemia AND bacteremia OR bacteraemia
Results: 170 citations, 0 relevant titles

(e) Keywords: neonates OR neonate AND antibiotics OR antibiotics AND therapeutics
Results: 219 citations, 27 relevant titles, 5 abstracts used

(i) Keywords: neonates OR neonate AND antibiotic OR antibiotics AND meningitis OR encephalitis OR encephalomyelitis
Results: 90 citations, 60 relevant titles, 6 abstracts used

(j) Keywords: neonates OR neonate AND antibiotic OR antibiotics AND pneumonia
Results: 25 citations, 9 relevant titles, 0 relevant abstract

(k) Keywords: neonates OR neonate AND antibiotic OR antibiotics AND safety
Results: 3 citations, 0 relevant title.

(m) Keywords: neonates AND necrotising AND enterocolitis
Results: 16 citations, 1 relevant title, 1 abstract reviewed.

(n) Keywords: necrotising enterocolitis AND antibiotics
Results: 3 citations, 0 relevant title

(o) Keywords: acyclovir
Results: 28 citations, 10 relevant titles, 9 abstracts reviewed

(p) Keywords: neonate AND viral AND infection
Results: 37 citations, 3 relevant titles

(q) Keywords: viral AND infection NOT HIV
Results: 228 citations, 15 relevant titles, 3 abstracts reviewed

(r) Keywords: ribavirin
Results: 13 citations, 8 relevant titles, 5 abstracts reviewed

(s) Keywords: ganciclovir
Results: 9 citations, 2 relevant titles, 2 abstracts reviewed

(t) Keywords: CMV OR cytomegalovirus
Results: 209 citations, 11 relevant titles, 1 abstract reviewed

(u) Keywords: varicella zoster
Results: 48 citations, 7 relevant titles, 4 abstracts reviewed
5. RESULTS

5.1 Febrile Neutropenia

5.1.1 Effectiveness

(a) Antimicrobial agents

There is universal agreement in the literature that broad spectrum antibiotics should be instituted for all cases of febrile neutropenia because of the significant morbidity and mortality associated with bacterial sepsis in cancer patients with fever (Viscoli et al, 1998; Gaya, 1998; Hughes et al, 1997).

The choice of initial empirical antibiotics, however, remains controversial (Duzova et al, 2001; Fleischack et al, 2001; Kebudi et al, 2001; Furno et al, 2000, Petrilli et al, 2000). However, Vancomycin is not recommended as initial empirical treatment (Feld, 1999).

Monotherapy with antibiotics like Cefepime, Ceftriaxone, Ceftazidime and Meropenem have been found to be equally efficacious and safe compared to combination chemotherapy with antipseudomonal beta-lactams and aminoglycosides. (Mustafa et al, 2001; Kebudi et al, 2001; Duzova et al, 2001; Fleischack et al, 2001; Ariffin et al, 2001; Sidi et al, 2000; Furno et al, 2000; Ramphal, 1999; Tomlinson et al, 1999; Freifeld et al, 1999; Karthaus et al, 1998). A prospective study found that Piperacilin-Tazobactam to be as effective as monotherapy for initial empirical antimicrobial therapy in febrile neutropenia patients (Bohme et al, 1998). A daily dose of Amikacin has been recommended for immunocompromised paediatric patients with fever (Krivoy et al, 1998). A subset of low risk patients with febrile neutropenia may be discharged and treated with oral Ciprofloxacin or Cefixime (Shenep et al, 2001; Aqino et al, 2000; Klaassen et al, 2000; Paganini et al, 2000; Petrilli et al, 2000; Mullen et al, 1999).

(b) Antifungals

Antifungal therapy is warranted for febrile neutropenic patients who do not respond to a week’s course of antibiotic therapy, since close to 33% cases will develop systemic fungal infections like Candida or Aspergillus after that period. However, there is no good evidence in the literature to support routine antifungal or antiviral therapy at the onset of febrile neutropenia (Viscoli et al, 1998; Hughes et al, 1997).
5.1.2 Cost
Ceftriaxone plus aminoglycosides was found to be less expensive than other empiric antibiotic regimens for febrile neutropenia in children (Castaglona et al., 1998).

5.2 Meningitis and Encephalitis
5.2.1 Effectiveness of antibiotic use
(a) Haemophilus influenza meningitis
In the treatment of Haemophilus influenza meningitis, Cefotaxime, Ceftriaxone, Ampicillin and Chloramphenicol are all thought to cross the blood brain barrier during acute inflammation in concentrations adequate to render them effective. With respect to sensitivity, a study in Poland found that all isolates were sensitive to third generation Cephalosporin and Chloramphenicol (Skocynska et al., 2000), while a study in Saudi Arabia had observed an isolate resistant to Ampicillin (Uduman et al., 2000).

(b) Streptococcus pneumonia meningitis
Penicillin, a cheap and safe antibiotic has been the treatment of choice for Streptococcus pneumonia meningitis. However, the incidence of relative and complete penicillin resistance, and multiple drug resistance has increased in the last decade (Greenwood, 1999). The incidence of Penicillin resistance has been reported to be 1% in a study in Holland (Spanjaard@amc.uva.nl), while studies in Italy and Sweden observed penicillin resistance of up to 0.2 – 10.2% and 11% respectively (Eriksson et al., 2000, Principi, 2000). In a three-year multi-centre surveillance study in USA, 19.3% of isolates were intermediate or resistant to Penicillin, while 7.2% were intermediate or resistant to Ceftriaxone (Arditi et al., 1998). In Malaysia too, an increasing trend in penicillin resistance has been seen from 2.4 – 7% in 1978-1988 to 8% in 1995-1996. Serotypes 23F, 6B, 34, 14, 19, 23 were implicated in Malaysia, while two Pneumococcal isolates were resistant to Erythromycin, Chloramphenicol, Cefotaxime and Ceftriaxone (Farida, 1997). Consequently, third generation cephalosporins such as Ceftriaxone and Cefotaxime are the next antibiotic of choice. It has been found that Chloramphenicol is not effective when administered alone, due to a lack of autolysins in penicillin resistant isolates (Farida, 1997). In hospitals with a high prevalence of Penicillin resistance, the recommended empiric therapy is a combination of Vancomycin and a third generation cephalosporin. (Arditi et al, 1998; Stanek et al, 1999). The Committee of Infectious Diseases of the American Academy of Paediatrics has recommended the above regime for all children older than 1 month of age with probable or definite bacterial meningitis (American Academy of Pediatrics).

(c) Neisseria meningitides meningitis
Intravenous Penicillin remains the drug of choice for Meningococcal Meningitis, although rare resistant isolates have been reported. Chloramphenicol provides effective treatment for patients allergic to Penicillin. Both Cefotaxime and Ceftriaxone are also effective empirical therapy.
(d) Encephalitis

For Viral Encephalitis infections, no specific therapy is available (McMinn et al, 2001). Pleconoril is an attractive option but has been used on a limited basis (Rotbart et al, 2001; Hsiung & Wary 2000). Acyclovir remains the mainstay of treatment for Herpes Encephalitis (Utley & Oigden, 1997; McGrath et al, 1997).

5.2.2. Adjuvant Dexamethasone administration in bacterial meningitis

A meta-analysis supported the use of Dexamethasone only for Haemophilus influenza meningitis, given before or after administration of antibiotics. It was found that those received Dexamethasone had less hearing deficit episodes, although the reduction in the incidence of neurological deficits was not statistically significant (McIntyre et al, 1997). However, a study in USA reported no benefit of Dexamethasone in reducing incidence of either hearing loss or neurological deficits for Streptococcus pneumonia (Arditi et al, 1998). In addition, two other reports also revealed that Dexamethasone was not beneficial (Coyle PK@neuro.som.sunny.edu; Shembesh et al, 1997).

5.3 Community Acquired Pneumonia

5.3.1 Effectiveness

(a) Empirical treatment

A review found that oral Amoxycillin and Erythromycin were effective for children aged 5 years or less, and older children or adolescents respectively (Grant & Ingram, 2000). Another review recommends Macrolides as the first choice antibiotic for outpatients, depending on the clinical picture and severity of illness, while penicillin G, macrolides or Cefuroxime plus macrolides are recommended for hospitalized patients (Ruuskanen & Mertsole, 1999)

(b) Pneumonia due to Pneumococcus/Streptococcus / Haemophilus

A study of pneumonia patients treated with either Azithromycin suspension or Amoxicillin-Clavulanate (for those less than 5 years) or Erythromycin estolate (for those aged 5 years or more), found the clinical response to therapy was similar, including those with bacterial infections. In this study only 43% of presumed etiology was identified (Wubbel et al, 1999).

A comparison of one injection of Benzathine Penicillin to a 7- day Procaine Penicillin regimen found no significant difference in the cure rates, with the former having the added advantages of lower cost, better compliance and low rates of adverse reactions (Camargos et al, 1997). A prospective, randomized blinded clinical trial of pediatric patients with presumed bacterial pneumonia found no significant difference between oral Amoxicillin and Procaine Penicillin G treatment (Tsarouhas et al, 1998).

In Pakistan, a large RCT found Co-trimoxazole to be effective therapy in non-severe pneumonia, while for severe, life-threatening pneumonia, it was less effective than Amoxycillin (Straus et al, 1998)
The US and British Thoracic Societies have recommended Cefuroxime as treatment for community-acquired pneumonia (Olivier, 2000).

A review of Pneumococcal infections in the developing world found that it could be treated effectively with penicillin (Greenwood, 1999). This was supported by another review recommending Penicillin and Amoxicillin as drugs of choice for pneumococcal infections (Grimwood et al, 1997). A study of children with non-severe pneumonia found that they responded on the third day of administration of a 5-day treatment of Amoxicillin (Awasthi, 2000).

(c) Penicillin resistant Streptococcus pneumoniae
Penicillin resistant Streptococcus pneumoniae is a growing concern because of the importance of this pathogen in the infections of the respiratory tract. A study in Singapore found that 17% of the Streptococcus pneumoniae infections patients were penicillin resistance (Chong et al, 1997). A cross sectional survey in Central Africa, found 8.8% Streptococcus pneumoniae resistant to Penicilllin, and 6.3% to Trimethoprim–Sulfamethoxazole, with higher resistance rates among inpatients (Rowe et al, 2000).

The effect of treatment of community acquired pneumonia with combinations of antibiotics did not differ significantly between patients with penicillin-susceptible versus those with non-susceptible isolates of S pneumoniae (Tan et al, 1998).

In Central Africa, resistance rates to Ampicillin, Trimethoprim-Sulfamethoxazole, and Chloramphenicol were 1.4, 12.3 and 0%, respectively (Rowe et al, 2000). In Singapore, 5% of the H. influenzae had multiple resistance to Erythromycin, Trimethoprim-Sulfamethoxazole and Chloramphenicol (Chong et al, 1997).

(d) Mycoplasma Pneumoniae and Chlamydia Pneumoniae
A RCT comparing Azithromycin and Amoxicillin/Clavulanate in children aged 5 years or less and Erythromycin estolate in those more than 5 years old, found that microbiologic eradication of C. pneumoniae and M. pneumoniae was better with Azithromycin (Harris et al, 1998). Clarithromycin was also found to be efficacious in treating infants and children with C. pneumoniae (Numazaki et al, 2000).

It has been recommended that macrolides be considered as empirical antimicrobial treatment since C pneumoniae is an important cause of community acquired pneumonia in schoolchildren (Heiskanen-Kosma et al, 1999)

5.3.2 Safety
Treatment-related adverse events occurred less with Azithromycin compared to Amoxycillin/Clavulanate or Erythromycin group (Harris, 1998).

5.3.3 Costing
A study using sequential antimicrobial therapy found patients had a shorter length of hospital stay, shorter duration of inpatient antimicrobial therapy, and shorter of IV therapy, resulting in reduction of total healthcare costs (Al-Eidan et al, 1999).
5.3.4 Local situation
There is lack of local data on etiology for pneumonia in children, as well as on the pattern of antibiotic utilization for pneumonia in children. The current local prices of the commonly used antibiotics at hospital level are indicated in Appendix 1.

5.4 Sepsis in Children
5.4.1 Community acquired bacterial sepsis in previously healthy children
(ii) Sepsis with no obvious source or with respiratory, urinary tract infection, or central nervous system involvement
Though the commonly used antibiotics are Cloxacillin/Penicillin and a third generation Cephalosporin/Gentamycin, no evidence could be obtained related to their use.

(ii) Sepsis with genito-urinary or gastrointestinal tract involvement
Though the commonly used antibiotics are Cloxacillin/Vancomycin, a third generation Cephalosporin/Gentamycin and Metronidazole, no evidence could be obtained related to their use.

5.4.2 Nosocomial sepsis
A surveillance study found that the pattern of blood stream infections in Paediatric ICU is partly determined by the type of patient treated, and that the use of broad-spectrum empiric antibiotics not only risks promoting further antibiotic resistance, but may also not improve patient outcome (Gray, 2001). However, a prospective cohort study found that appropriate empirical antibiotics treatment was associated with a significant reduction in fatality in patients with bloodstream infection (Leibovici, 1998).

A cohort study showed that ruling out suspected ventilator-associated pneumonia, and curtailing extended prophylaxis would assist in reduction in antibiotic use (Fisher, 2000).

It has been found that four agents - Cefuroxime, Metronidazole, Gentamycin and Ampicillin accounted for half of all antimicrobials used, involving 20% of expenditure. Further, although 53% of antimicrobials surveyed were restricted, they accounted for only 29% of all antimicrobial courses (Raveh, 2001). A retrospective study on hospital acquired Candidaemia in a developing country found no significant difference between patients treated with Amphotericin B and Fluconazole (Al Soub & Estinoso, 1997). Another study found that 60% of Gram negative rods were Ampicillin resistant, although sensitive to third generation empirical antibiotics like Cefotoxime and Gentamicin (Sadow, 1999).

A study on predominant Staphylococci in an intensive care unit found that while susceptible to Vancomycin, 97% were resistant to Methicillin and 30% resistant to Mupirocin. However, S epidermidis was susceptible to Amoxycillin, Clavalunic acid and Cephalosporin (Sewezyk, 2000).
A rational policy in antibiotic therapy in intensive care found that its use was decreased by 19% and 22% in 1995 and 1996 respectively (Blanc, 1999).

5.4.3 Adjuvant therapy
A Cochrane Review found that Polyclonal Intravenous Immunoglobulin significantly reduces mortality and can be used as an adjuvant treatment for sepsis and septic shock (Alejandria et al, 2001).

5.5 Neonatal Sepsis

5.5.1 Use of antimicrobials
A study on bacterial infections in infants aged 60 days where *Listeria* was not isolated, it was found that 60% of the gram-negative rods were Ampicillin resistant. However, third generation cephalosporins with or without Gentamicin were useful (Sadow et al, 1999). In babies at risk of sepsis, empirical coverage for asymptomatic newborns need not include Gentamicin because although it improved the coverage of Ampicillin alone, it exposed infants to the side-effects of Gentamicin (Johnson, 1998). Another study found that in early onset sepsis, gram-negative bacilli predominated, with gram-positive cocci in late onset sepsis, and the third generation cephalosporins were found to be effective (Kaushik & Parmer, 1998). For infants who develop sepsis in the first week of life, since empirical therapy should cover Group B *Streptococcus, Enterobactericaeae* and *Listeria*, as well as hospital acquired pathogens like *Staphylococcus, Enterococci, and Pseudomonas aeruginosa*, Penicillin or Ampicillin, and an Aminoglycoside are recommended. Cephalosporins are not recommended for the initial therapy of suspected sepsis (Yurdakok, 1998)

For suspected blood stream infection, a combination of Ampicillin and Gentamicin is recommended for early onset and Vancomycin and Gentamycin for late onset. Apart from this, a controlled antibiotic programme and periodic evaluation is needed (Cordero & Sandnes, 1999).

In skin infections, anti-*Staphylococcal* or anti-*Pseudomonal* agents like Netilmicin or Amikacin need to be used (Yurdakok, 1998).

In Israel, a policy of highly selective Vancomycin usage is supported as only one case of blood-borne Vancomycin resistant gram positive organism was observed during the period of the study (Matral-Kovalskis et al, 1998). A study found that policies regarding the empirical use of antibiotics affected the emergence of antimicrobial resistance, in that avoiding Amoxicillin and Cefotaxime restricted the emergence of resistant bacteria especially *Enterobacter cloacae* (de Man & Verhoevn, 2000).
5.5.2. Dosing of antibiotics
(i) Gentamicin
Once daily dosing has been found to be as effective as twice daily therapy, more effective in premature and term infants (Solomon et al, 1999; Mureen et al, 1999). A once daily dose also has logistic and monetary benefits in addition to the pharmacokinetic advantage (Krishnan & George, 1997). An initial Gentamicin dosage interval of 12 hrs. in infants of any gestation age or of 24 hrs in infants less than thirty weeks gestational age, leads to most having toxic trough serum Gentamicin (SGM) levels. Conversely, most infants at thirty weeks gestational age or more, have safe non-toxic trough SGM levels if started on a dosage interval of 24hrs. (Davies & Cartwright, 1998). Although a loading dose, followed by once daily dosing resulted in safe and therapeutic range of drug levels in all term neonates, in low birth weight neonates, delaying the initiation of maintenance once daily dosing until 36-48 hours after loading, would result in a higher incidence of initial trough serum drug levels within the target range for such babies (Lundergan et al, 1999).
(ii) Vancomycin
A dosage of 30mg per day in 3 divided doses irrespective of age leads to adequate Vancomycin trough serum concentration and peak concentration without a need for routine monitoring of peak serum concentration. (De Hoog M et al, 2000).

(iii) Amikacin
In full term neonatal patients, a once daily dosing of Amikacin is no more toxic than the twice-daily dosing regime with regards to renal impairment (Kotze A et al, 1999).

5.5.3. Duration of antibiotics
In neonates with pneumonia or sepsis, antibiotics should not be stopped although cultures show no growth, a duration of 10-14 days being recommended (Yurdakok, 1998). However, another study found that duration of antibiotics may be reduced in selected patients with neonatal pneumonia from 7 days to 4 days. Thus, additional studies are needed to assess safety and benefits (Burton et al, 2000)

5.5.4. Prophylactic antibiotics
(i) Vancomycin
It has been found that in subgroups of infants at high risk of infection, like those less than 1 kg and on steroids, the benefits of prophylactic Vancomycin may outweigh concerns over potential emergence of bacterial resistance (Baier et al, 1998). Prophylaxis with intermittent low dose Vancomycin infusions may help reduce recurrent coagulase-negative Staphylococcus aureus bacteremia in very low birth weight infants receiving parenteral nutrition (Cooke et al, 1997). In preterm babies receiving parenteral nutrition over 1 year, prophylactic Vancomycin reduced the incidence of gram-positive infections (Ocete et al, 1998). The incidence of Vancomycin sensitive blood stream infections was decreased when Vancomycin was used at the time of catheter placement. Concerns regarding the emergence of Vancomycin resistant organisms preclude support of its use as a prophylactic agent (Falllat & Gallinaro, 1998).
(ii) Penicillin
The routine use of postnatal Penicillin prophylaxis appears to be effective in reducing the incidence of clinical sepsis and death from sepsis in neonates (Patel et al, 1999).

(iii) Teicoplanin
Teicoplanin has been found to be as good as Vancomycin in preventing coagulase-negative Staphylococcus aureus sepsis (Moller et.al, 1997).

5.5.5. Prophylaxis in specific conditions
(i) Necrotising Enterocolitis (NEC)
It has been found that there is no place for the use of enteral antibiotics for NEC in clinical practice (Bury & Tudhope, 2000).

(ii) Airway colonisation
Systemic antibiotics failed to eradicate gram-negative bacilli colonisation in airways in 97% of cases, and hence, empirical use for the prophylaxis or treatment of airway colonisation is discouraged (Cordero, 2000).

(iii) Parenteral Nutrition
Prophylactic intermittent low dose of Vancomycin infusions may help reduce recurrent coagulase-negative Staphylococcus aureus bacteremia in very low birth weight infants receiving parenteral nutrition (Cooke et al, 1997). Prophylactic Vancomycin also reduced the incidence of gram-positive infections in preterm babies receiving parenteral nutrition over a period of a year (Ocete et al, 1998).

(iv) Catheter placement
The incidence of Vancomycin sensitivity was also decreased when Vancomycin was given at the time of catheter placement (Fallat & Gallinaro, 1998).

5.5.6. Antibiotics of choice in specific conditions
(i) Fulminant sepsis
The frequency of fulminant sepsis was found to be highest for Pseudomonas species and lowest for coagulase negative Staphylococci. Thus, although empiric antibiotic treatment of suspected sepsis in infants more than 3 days old need to effectively treat gram negative pathogens particularly Pseudomonas species, avoiding empirical Vancomycin therapy is a reasonable approach to late onset sepsis (Karlowicz et al, 2000). One study found that Imipenam/Cilastin was effective therapy in premature infants and newborns with serious nosocomial infections even after failure of other broad-spectrum antibiotics (Boswald et al, 1999).

(ii) Sepsis in Tetanus
The common organisms causing sepsis in neonates that develop tetanus, were found to be Klebsiella pneumoniae, Enterobacter cloacae and Staph aureus. While the antimicrobial susceptibility favoured Ofloxacin, a Cloxacillin/Gentamicin combination was recommended. Ceftazidime was the favoured cephalosporin with about 60 % susceptibility (Egri Okwaji & Iroha, 1998).
(iii) **Staphylococcus**
The blanket use of Mupirocin ointment was found to be an effective method of controlling Multiple Resistant *Staphylococcal aureus* in neonate intensive care units when outbreaks could not be managed by conventional measures (Hitomi et al, 2000). Another study recommended Penicillinase-resistant Penicillins like Oxacillin, Nafticillin and Methicillin for *Staphylococcus*, and Vancomycin for resistant strains (Yurdakok, 1998).

(iv) **Group B Streptococcus**
Penicillin has been found to be the drug of choice for group B *Streptococcus* infections. In Penicillin intolerance, choice of an alternative antibiotic should be guided by contemporary resistance patterns (Lin et al, 2000). It was also found that Group B *Streptococcus* was sensitive to Penicillin G, Cefotaxime, Ampicillin with no high levels of resistance to Gentamicin being noted. (Aitmanhand, 2000). Group B *Streptococcus* has been found to have overtaken *E. coli* in one centre as the leading cause of meningitis, highlighting the importance of developing strategies to prevent these group B *Streptococcus* infections (Chang Chien et al, 2000).

(v) **Gram negative bacteria**
A study on neonatal sepsis found that among gram-negative bacteremia, with increased resistance to extended spectrum for Cephalosporins, Piperacillin, and Gentamicin, a combination of Ampicillin and Sulbactam with Amikacin, or Ampicillin and Sulbactam with Ciproflox was found to be effective (Joshi et al, 2000).

Increased resistance to Gentamicin, Amoxicillin/Ampicillin Ceftazidime, and Cefuroxime has been found to be due to non-investigation of infants put on antibiotics, unjustified and prolonged use of antibiotics, lack of utilisation of laboratory investigations when these were carried out, and delay in obtaining laboratory results at the ward level (Musoke & Revathi, 2000).

The use of third generation Cephalosporin and Amikacin in the treatment of gram-negative bacterial meningitis has also found support (Dellagrammaticas & Christodoulou, 2000). Other agents recommended for resistant gram-negative bacteria are Carbapenems, Aztreonam, Quinolones and Isepamicin (Yurdakok, 1998). Ciprofloxacin has also been found to be useful in the treatment of preterm/low birth weight infants infected with *Enterobacter cloaca*, *Pseudomonas aeruginosa* and *Klebsiella* pneumonia resistant to other antibiotics (Van den Vever & Vers teegh, 1998)

(vi) **Enterobacter cloacae**
It has been found that highly antibiotic resistant *E cloacae* may emerge during an outbreak, although sensitive to Imipenem /Ciproxin (Peters et al, 2000). In highly B lactam resistant *Enterobacter cloacae*, replacing Ampicillin plus Cefotaxime as standard empirical therapy with Penicillin G and Netilmicin, and consequent cohorting of newborns and staff had been effective in halting outbreaks (Finnstrom & Isksson, 1998)
(vii) **Klebsiella pneumonia**
Imipenem has been found to be a good alternative for neonatal *Klebsiella pneumonia*, although there is increased risk of *C. albicans* infection (Oral, 1998). For multi-drug resistant *Klebsiella*, the use of Ciprofloxacin and Gentamicin has been found to be a good alternative (Khaneja & Naprawa, 1999). However, it has also been found that Gentamicin failed to sterilise the infants’ blood and body fluids, and hence a combination of an Aminoglycoside and a third generation Cephalosporin such as Cefotaxime is necessary (Traub et al, 2000). One study found all *Klebsiella pneumonia* isolated were resistant to Aminoglycosides, third generation Cephalosporins and Aztreonam, but were sensitive to Imipenem and Ciprofloxacin (Roilides & Kyriakides, 2000).

In outbreaks of Klebsiella, Gentamicin resistant *K. pneumonia* were associated with low gestational age, low birth weight and increased length of stay. However, replacing Gentamicin with Amikacin stopped these outbreaks (Van der zwet & Parlexliet, 1999). In Australia, an ESBL *Klebsiella pneumonia* outbreak was controlled by altered empiric antibiotic treatment for late onset sepis like Imipenem/Vancomycin over Vancomycin and Gentamicin, and prevention of cross infection by strict attention to hand washing (Royle et al., 1999). In Nigeria, it was found that all strains of *Klebsiella* were sensitive to most antibiotics but resistant to Ampicillin (Akindele & Rotilu, 1997).

(viii) **Bacillus cereus**
A combination of Vancomycin and Gentamicin was found to be appropriate for meningitis or systemic infections of most *Bacillus cereus* species in Australia (Tuladhar et al., 2000)

(ix) **Stenotrophomonas maltophilia**
A *Stenotrophomonas maltophilia* infection was found to be successfully treated by Amikacin (Ozkan et al., 1999)

(x) **Morganella morganii**
In *Morganella morganii* infections, since Gentamicin failed to sterilize the infants’ blood and body fluids, a combination of Aminoglycoside and a third generation Cephalosporin such as Cefotaxime was found to be necessary (Ranu et al., 1999)

(xi) **Salmonella typhi**
Quinolone resistant strains of *Salmonella typhi* or *paratyphi* have been reported from the Indian sub-continent (Bhutta, 1997). Newborns with *Salmonella meningitis* who relapsed after 4 weeks of Cefotaxime treatment were cured with Imipenem/Cilastin therapy (Koc et al, 1997)

(xii) **Flavobacterium meningosepticum**
For *F meningosepticum*, synergy was observed between Rifampicin and Vancomycin especially in neonatal meningitis, while a combination of Meropenem and Vancomycin was antagonistic. Combinations of Vancomycin, Ciprofloxacin and Linezolid showed additive effect against all isolates. However, combinations of Ciprofloxacin with newer Quinolones or Linezolid need further study (Di Pentima et al, 1998)
(xiii) Enterococci
It has been found that the high level Aminoglycoside resistant Enterococci were sensitive to Vancomycin, while for Gentamicin sensitive strains of E. Fecium, Gentamicin and Ampicillin were recommended (Bhat et al, 1997). Combinations of Penicillin, Ampicillin or Vancomycin and an Aminoglycoside were also found to be effective (Yurdakok, 1998).

(xiv) Pseudomonas
Piperacillin and Azlocillin, Cefoperazone and Ceftazidime were most active against Pseudomonas (Yurdakok, 1998)

(xv) Ureaplasma urealyticum
U. urealyticum is a common isolate in the endo-tracheal tube aspirates of infants with respiratory distress in Malaysia. While Erythromycin was an effective antibiotic, however there was resistance to Lincomycin and Sulphamethaxazole Trimethoprim (Tay et al, 1997). Erythromycin was also found to be effective in reducing colonization, but did not reduce the length of time infants needed supplemental oxygen (Jonson et al, 1998).

(xvi) Candidiasis
Candidiasis is common in patients exposed to systemic steroids, antibiotics (especially third generation Cephalosporins), catecholamine infusions and mechanical ventilation. Thus, these were used as a basis by clinicians to initiate empirical Amphotericin B in neonates at risk (Benjamin, 2000). It has been found that if blood cultures are positive prompt treatment with Amphotericin B, although these infants also need further evaluation (Rowen & Tate, 1998). Liposomal Amphotericin B has been found to be effective and safe for treatment of fungal infections (Scarcella & Pasquariello, 1998). Very low birth weight infants with Candida infections were successfully treated with Amphotericin B with no nephrotoxicity (Weitkamp & Poets, 1998).

(xvii) Aspergillosis
The predisposing factors in most cases with Aspergillosis were prematurity, Chronic Granulomatous Disease, complex diarrhoea, malnutrition, corticosteroid administration and invasive bacterial infections. The current therapeutic approach for treatment is high dose Amphotericin B and appropriate surgical interventions (Groll & Jauger, 1998)

5.5.7. Use of Anti-virals
(i) Respiratory syncytial virus infection
Ribavirin inhalation therapy has been suggested for high-risk infants with clinical symptoms indicating serious Respiratory syncytial virus (RSV) infection (Swedish Consensus Group, 2001). However, there is no place for Ribavirin in routine treatment of lower respiratory tract infection (Van Woensel et al, 2001; Greenough, 2001; Rodriguez, 1999)

(ii) Cytomegalovirus infection
Ganciclovir administration has been found to decrease the excretion of Cytomegalovirus (CMV) in urine, but recurred on cessation of therapy (Whitley et al, 1997). It has also
been found that antimicrobial treatment for CMV is unsatisfactory (Brown & Abernathy, 1998).

(iii) Herpes Simplex Virus Infection
Newer anti-herpes agents like Valaciclovir, Famciclovir and Vidarabine have been found to offer no advantage over Acyclovir, and are thus not recommended for neonatal Herpes Simplex Virus (HSV) infection (Jacobs, 1998; Kesson, 2001). Acyclovir shortens the duration of clinical illness and viral shedding, and reduces morbidity and mortality (Kesson, 1998). The use of high dose acyclovir for the management of acute neonatal HSV disease has reduced mortality rates to the lowest level (Kimberlin, 2001). Patients with disseminated HSV treated with high dose Acyclovir had higher survival rates compared with those on standard doses (Kimberlin et al, 2001). Oral Acyclovir was demonstrated to prevent cutaneous recurrences of HSV after neonatal skin, ear and mouth infections (Jacobs, 1998). Thus, it has been recommended for patients with non-life threatening illness who may still have significant symptoms (Kesson, 1998). However, care must be taken as a case of Acyclovir-resistant neurocutaneous HSV infection has been reported (Oram et al, 2000).

Antiviral therapy for skin, eye, and mouth herpes infection was found to be cost effective, although treatment of the central nervous sytem or disseminated antiviral therapy saved more lives at an increased cost (Oram et al, 2000).

(iv) Varicella Zoster
Intravenous Acyclovir has been suggested to be given to unwell babies with chicken pox (Heuchan & Isaacs, 2001). Acyclovir has also been found to be beneficial in treatment of neonatal Varicella (Singalavaniya et al, 1999; Ogilvie, 1998). A combination of intravenous Immunoglobulin and Acyclovir has been found to effectively prevent perinatal Varicella. (Huang et al, 2001).

(v) Sepsis
Comprehensive therapy including antimicrobials and anti-virals should be initiated in toxic newborns presenting with fever, lethargy, irritability, where it is important to consider a diagnosis of meningitis, until a cause is identified (Norris et al, 1999). For neonates with sepsis coverage for viral infections especially HSV, Acyclovir/Vidarabine has been found to be effective if started in early stages. Antivirals are also recommended for neonates whose mothers have a history of sexually transmitted disease to prevent the sequelae of untreated or inadequately treated HSV (D'Andrea & Ferrera, 1998).

5.5.8. Safety
There were not many references with regard to safety of antibiotics specifically in neonates. The use of Teicoplanin in the treatment of staphylococcal infections has been reported to have not produced any apparent toxicity (Degrease & Bemoan, 1998)

5.5.9. Local situation
The local sensitivity pattern of common organisms would need to be taken into account in decisions relating to appropriate antimicrobial therapy.
5.5.10. **Cost**
Several strategies have been recommended to attempt to save costs in use of antibiotics. Home antibiotic therapy as an alternative to hospital care has been suggested for patients with rapid recovery from infection, and meeting early discharge criteria, (Wagner et al, 2000). Early discharge may also be possible with reduced cost of treatment if sepsis could be ruled out by a combination of tests (Anwer & Mustafa, 2000). It has been also found that the largest reduction in antibiotic treatment in the ICU setting would be from measures to rule out suspected ventilator associated pneumonia (Fischer et al, 2000). A once daily dose of Gentamicin has also been found to be more cost effective (Krishnan & George 1997; Solomon et al, 1999).

The prices of some of the commonly used antibiotics in the Ministry of Health hospitals are provided in Appendix 2 for reference.

6. CONCLUSIONS

6.1 Febrile Neutropenias
There is sufficient evidence to support the use of either monotherapy or combination therapy antibiotics, using a third or fourth generation Cephalosporin, and Beta-lactam agent and an Aminoglycoside respectively.

There is scanty data regarding utility of empiric antifungal therapy in neutropenic children with cancer.

There is no good evidence to support the practice of routine antiviral therapy for febrile neutropenia.

There is limited data regarding cost-effectiveness of different antibiotic regimens in the treatment of febrile neutropenia.

6.2 Meningitis & Encephalitis
There is sufficient evidence of the effectiveness of third generation Cephalosporins to treat *Haemophilus influenza meningitis type b* and *Streptococcus meningitis*.

There is no evidence of effectiveness of antibiotics in viral encephalitis, except the use of Acyclovir in *Herpes* encephalitis.

There is evidence that Dexamethasone used with antibiotics reduces hearing loss in *Haemophilus influenza meningitis*.

6.3 Community Acquired Pneumonia
There is inadequate data on the effectiveness of various different antibiotics but there is some evidence to support the use of Azithromycin, Amoxicillin, Clavulanate, Erythromycin, Cefuroxime, Macrolides and Penicillin in the treatment of pneumonia.

There is inadequate data on adverse effects and costing.
6.4 Sepsis in children
There is no evidence to support the use of specific antibiotics for sepsis in children, although the commonly used antibiotics were found to be Cefuroxime, Metronidazole, Gentamycin and Ampicillin.

There is good evidence to support the use of Polyclonal Intravenous Immunoglobulin as adjuvant treatment for sepsis and septic shock.

6.5 Neonatal Sepsis
There is evidence to support the use of Penicillin, Ampicillin, Aminoglycosides, Cephalosporins and Vancomycin in the treatment of neonatal sepsis.

There is evidence to support the effectiveness of Liposomal Amphotericin B in Candidiasis.

There is also evidence of effectiveness of once daily dose of Gentamicin, but inconclusive evidence on the appropriate duration of antibiotics.

There is evidence to support the use of Vancomycin, and some evidence on the use of Penicillin and Teicoplanin in prophylaxis. There is insufficient evidence on the use of prophylaxis in specific conditions.

There is also insufficient evidence on antibiotics of choice in specific conditions.

There is insufficient evidence to support the use of antiviral agent in various conditions, except for evidence of effectiveness of Acyclovir in Herpes simplex infection and neonatal Varicella infection.

There insufficient evidence with regards to safety and cost effectiveness of antibiotics in neonates.

7. RECOMMENDATIONS
7.1 Febrile Neutropenia

(i) Antibiotic therapy in patients with febrile neutropenia can be either with monotherapy or combination therapy.

(ii) Monotherapy can be initiated with a third or fourth generation Cephalosporin, while combination therapy can be initiated using a Beta-lactam agent and an Aminoglycoside.

(iii) Routine antifungal or antiviral therapy at the onset of febrile neutropenia are not recommended.
7.2 **Meningitis & Encephalitis**

(i) Third generation Cephalosporins should be used to treat meningitis due to *Haemophilus influenza meningitis type b* and *Streptococcus*.

(ii) Dexamathasone is recommended to be used with antibiotics to reduce the possibility of hearing loss in *Haemophilus influenza* meningitis.

(iii) Antibiotics are not recommended in viral encephalitis except for the use of Acyclovir in *Herpes* encephalitis.

7.3 **Community Acquired Pneumonia**

(i) Oral antibiotics like Azithromycin, Amoxicillin-Clavulanate, Erythromycin Estolate, Amoxicillin, and Co-Tirimoxazole may be used in the outpatient treatment of pneumonia.

(ii) The macrolides may have a role in the older child.

(iii) For the treatment inpatient of Pseudomonas Community Acquired Pneumonia the Penicillin group of drugs may be used.

7.4 **Sepsis in children**

(i) Antibiotics like Cefuroxime, Metronidazole, Gentamycin and Ampicillin can be used to treat sepsis in children.

(ii) Polyclonal Intravenous Immunoglobulin can be used as an adjuvant treatment for sepsis and septic shock.

7.5 **Neonatal sepsis**

(i) Ampicillin, Aminoglycosides, Cephalosporins and Vancomycin can be used in the treatment of neonatal sepsis while Penicillin is recommended for Group B Streptococcus.

(ii) Liposomal Amphotericin B is recommended in Candidiasis.

(iii) Gentamycin can be given on a once daily dose where indicated.

(iv) Vancomycin, Penicillin and Teicoplanin can be used for prophylaxis.

(v) Acyclovir is recommended in Herpes simplex infection and neonatal *Varicella* infection.
REFERENCES

39. Coyle PK. Glucocorticoids in Central Nervous System bacterial infections pcoyle@ neuro.som.sunny.edu

169. Spanjaard L, van der Ende A. Epidemiology of meningitis and bacteraemia due to Streptococcus pneumonia in the Netherlands The Netherlands ref lab for bacterial meningitis spanjaard@amc.uva.nl Dept Med Microbiology Academic Medical center

Appendix 1

Current local prices of commonly used antibiotics

<table>
<thead>
<tr>
<th>No</th>
<th>Antibiotic</th>
<th>Cost (RM)/unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Cap. Azithromycin Dihydrate 250mg</td>
<td>3.97/cap</td>
</tr>
<tr>
<td>2.</td>
<td>Cap Amoxycillin 250mg</td>
<td>0.10/tab</td>
</tr>
<tr>
<td>3.</td>
<td>Tab Amoxycillin + Clavulanic Acid 375mg</td>
<td>1.39/tab</td>
</tr>
<tr>
<td>4.</td>
<td>Tab Erythromycin ethylsuccinate 400mg</td>
<td>0.26/tab</td>
</tr>
<tr>
<td>5.</td>
<td>Tab Cotrimoxazole (Sulphamethoxazole 400mg & Trimethoprim 80mg)</td>
<td>0.043/tab</td>
</tr>
<tr>
<td>6.</td>
<td>Syr. Azithromycin Dihydrate 200/5ml</td>
<td>0.73/ml</td>
</tr>
<tr>
<td>7.</td>
<td>Syr. Amoxycillin + Clavulanic acid 228mg/5ml</td>
<td>0.23/ml</td>
</tr>
<tr>
<td>8.</td>
<td>Susp. Erythromycin Ethylsuccinate 200mg/5ml</td>
<td>0.04/ml</td>
</tr>
<tr>
<td>9.</td>
<td>Syr. Amoxycillin Trihydrate 125mg/5ml</td>
<td>0.02/ml</td>
</tr>
<tr>
<td>10.</td>
<td>Inj Crystalline Penicillin 1 MU</td>
<td>1.28/vial</td>
</tr>
<tr>
<td>11.</td>
<td>Inj Crystalline Penicillin 5 MU</td>
<td>3.07/vial</td>
</tr>
</tbody>
</table>
Appendix 2

Prices of commonly used antibiotics in the Ministry of Health hospitals

<table>
<thead>
<tr>
<th>Name</th>
<th>Price/unit (Rm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV GENTAMICIN 80 MG</td>
<td>RM 0.43</td>
</tr>
<tr>
<td>IV VANCOMYCIN 500 MG</td>
<td>RM 16.82</td>
</tr>
<tr>
<td>IV AMIKACIN 200 MG</td>
<td>RM 8.19</td>
</tr>
<tr>
<td>IV AMIKACIN 500 MG</td>
<td>RM 14.04</td>
</tr>
<tr>
<td>IVPENG 1 MEGA</td>
<td>RM 1.33</td>
</tr>
<tr>
<td>IV PEN G 5 MEGA</td>
<td>RM 3.28</td>
</tr>
<tr>
<td>IV PEN G 2.4 MEGA</td>
<td>RM 3.07</td>
</tr>
<tr>
<td>IV IMIPENAM 250 MG</td>
<td>RM 40.50</td>
</tr>
<tr>
<td>IV IMIPENAM 500 MG</td>
<td>RM 56.70</td>
</tr>
<tr>
<td>IV FORTUM 1 GM</td>
<td>RM 18.33</td>
</tr>
<tr>
<td>IV FORTUM 2 G</td>
<td>RM 33.99</td>
</tr>
<tr>
<td>IV MUPIROCIN 0.7 G</td>
<td>No record</td>
</tr>
<tr>
<td>IV CLOXACILLIN 500 MG</td>
<td>RM 1.06</td>
</tr>
<tr>
<td>IV AMIPICILLIN 500 MG</td>
<td>RM 0.64</td>
</tr>
<tr>
<td>IV CEFOTAXIM I G</td>
<td>RM 11.09</td>
</tr>
<tr>
<td>IV CEFOTAXIIM 2 G</td>
<td>RM 26.91</td>
</tr>
<tr>
<td>IV UNASYN</td>
<td>RM 13.28</td>
</tr>
<tr>
<td>IV CIPROBAY</td>
<td>RM 44.10</td>
</tr>
<tr>
<td>IV ZINACEF 750 MG</td>
<td>RM 8.24</td>
</tr>
<tr>
<td>IV AMPHOTERISIN B</td>
<td>RM 74.60</td>
</tr>
<tr>
<td>IV ZOVIRAX</td>
<td>RM 32.76</td>
</tr>
<tr>
<td>IV PIPERACILLIN 2 G</td>
<td>RM 14.13</td>
</tr>
<tr>
<td>IV PIPERACILLIN 4 G</td>
<td>RM 23.19</td>
</tr>
<tr>
<td>IV CEFOPERAZON / CEFOBID</td>
<td>RM 9.64</td>
</tr>
</tbody>
</table>
LEVELS OF EVIDENCE SCALE

<table>
<thead>
<tr>
<th>Level</th>
<th>Strength of Evidence</th>
<th>Study Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Good</td>
<td>Meta-analysis of RCT, Systematic reviews.</td>
</tr>
<tr>
<td>2</td>
<td>Good</td>
<td>Large sample of RCT</td>
</tr>
<tr>
<td>3</td>
<td>Good to fair</td>
<td>Small sample of RCT</td>
</tr>
<tr>
<td>4</td>
<td>Fair</td>
<td>Non-randomised controlled prospective trial</td>
</tr>
<tr>
<td>5</td>
<td>Fair</td>
<td>Non-randomised controlled prospective trial with historical control</td>
</tr>
<tr>
<td>6</td>
<td>Fair</td>
<td>Cohort studies</td>
</tr>
<tr>
<td>7</td>
<td>Poor</td>
<td>Case-control studies</td>
</tr>
<tr>
<td>8</td>
<td>Poor</td>
<td>Non-controlled clinical series, descriptive studies multi-centre</td>
</tr>
<tr>
<td>9</td>
<td>Poor</td>
<td>Expert committees, consensus, case reports, anecdotes</td>
</tr>
</tbody>
</table>

SOURCE: ADAPTED FROM CATALONIAN AGENCY FOR HEALTH TECHNOLOGY ASSESSMENT (CAHTA), SPAIN
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal, Year</th>
<th>Study Type, Sample size, Follow up</th>
<th>Outcome & Characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Author, Title, Journal, Year</td>
<td>Study Type, Sample size, Follow up</td>
<td>Outcome & Characteristics</td>
<td>Grade and & Comments</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>
Monotherapy with meropenem versus combination therapy with piperacillin plus amikacin as empiric therapy for neutropenic fever in children with lymphoma and solid tumors.
N=90 febrile neutropenic episodes in children with lymphoma and solid tumors. | Success with meropenem comparable with pip./amik.(76.6% vs 64.6%, p=0.25)
No serious drug-related adverse event. Meropenem monotherapy as effective as combin. With pip. + amikacin | Good to fair
Small sample size. Single center. |
Meropenem versus ceftazidime as empirical monotherapy in febrile neutropenia of paediatric patients with cancer.
Mer (n=172 febrile neutropenic episodes) vs ceftaz(n=170) | Gram + bacteremias predominate.
Success rate: 55.8% (Mer) vs 40%(ceftaz)(p=0.003 for FUO but not significant for documented infections. Longer duration of fever(median 5 vs 4d,p=0.022) & A/M Rx(7 vs 6 in ceftaz. arm(p=0.009).
Minimal side effects in both arms. Both drugs are useful as empirical monotherapy. | Good |
| 6 | Kebudi R, Gorgun O, Ayan I, Gurler N, Akia F, Torea K.
Randomized comparison of cefepime versus ceftazidime monotherapy for fever and neutropenia in children with solid tumors.
N=63 febrile episodes(N=32 Cefepime vs N=31ceftaz). | Success rate 62.5% cefepime vs 61.3% ceftaz
No major adverse effects in both arms. Cefepime as effective and safe as ceftazidime | Good to fair
Small sample size. |
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal, Year</th>
<th>Study Type, Sample size, Follow up</th>
<th>Outcome & Characteristics</th>
<th>Grade and & Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Ariffin H, Arasu A, Mahfuzah M, Ariffin WA, Chan LL et al.</td>
<td>Open-label ,randomised. N=128 pts</td>
<td>Success rate==55%, (ceftriax) vs 51.2%(ceftaz) Mean time to defervescence was 4.2d(ceftriax) vs 4.3d(ceftaz), Daily cost of once daily regimen was RM42 less vs thrice-daily regime. Convenience & substantial cost benefit of daily Rx. No significant adverse events in either group.</td>
<td>Good to fair Moderate sample size. Single center study needs validation.</td>
</tr>
<tr>
<td>8</td>
<td>Shenep JL, Flynn PM, Baker DK, Hetherington SV, Hudson MM, Hughes WT et al.</td>
<td>Randomised cohort. N=156 pts</td>
<td>Rx failures similar in both groups: IV(27%) vs cefixime (28%) Safety of oral cefixime confirmed.</td>
<td>Good to fair Moderate sample size. Single center study require validation.</td>
</tr>
<tr>
<td>9</td>
<td>Sidi V, Roilides E, Bibashi E, Gompakis N, Tsakiri A, Kolioukas D.</td>
<td>Randomised trial. N=32 pts & 52 gram + bacteremias. 25 episodes treated with teicoplanin & 21 with vancomycin plus ceftazidime & netilmicin.</td>
<td>Defervescence on 3rd-4th day occurred in 29/31(93.5%) teicoplanin Rx vs 18/21(85.7%) vancomycin Rx. All 12 teicoplanin Rx & 13/13 vancomycin Rx showed microbiologic response. Mild renal insufficiency in 5 vancomycin Rx pts. But self-correctable. Both exhibit clinical & microbiologic efficacy but teicoplanin less likely to induce allergic rxn or nephrotoxicity.</td>
<td>Good to fair Small sample size precludes accurate deduction.</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal, Year</td>
<td>Study Type, Sample size, Follow up</td>
<td>Outcome & Characteristics</td>
<td>Grade and & Comments</td>
</tr>
<tr>
<td>----</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
| 10 | Furno P, Dionisi MS, Bucaneve G, Menichetti F, Del Favero A.
Ceftriaxone versus beta-lactams with antipseudomonal activity for empirical, combined antibiotic therapy in febrile neutropenia: a meta-analysis.
Supportive Care in Cancer. 2000; 8, pp.293-301. | Meta-analysis
N=1,537 febrile episodes. | 256/782(32.7%) Rx failures with ceftriax-comb. vs 243/755(32.1%) with antipseudomonal beta-lactams.
Pooled OR of death for ceftriax =0.84
54/782(6.9%) vs 62/755(8.2%) with antipseudomonal beta-lactams.
Ceftriax. Comb are as effective as those antipseudo. beta-lactams. | Good
Good study.
However, prevalence of pseudomonas sepsis in all the trials not known. |
| 11 | Aquino VM, Herrera L, Sandler ES, Buchanan GR.
Feasibility of oral ciprofloxacin for the outpatient management of febrile neutropenia in selected children with cancer.
N=32 children with 45 febrile episodes. | 40/45(89%) pts Rx successfully in outpatient.
Lower 95% CI for successful Rx=70% | Good to Fair
Small sample size. |
| 12 | Paganini HR, Sarkis CM, De Martino MG, Zubizarreta PA, Casimir L, Fernandez C et al.
Oral administration of cefixime to lower risk febrile neutropenic children with cancer.
N=128 children.
154 febrile episodes. | Favourable outcome comparable in both groups (98.6% GpA vs 97.5% GpB) | Good
Moderate sample size.
Safe & cost-saving. |
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal, Year</th>
<th>Study Type, Sample size, Follow up</th>
<th>Outcome & Characteristics</th>
<th>Grade and & Comments</th>
</tr>
</thead>
</table>
| 13 | Arrifin H, Navaratnam P, Mohamed M, Arasu A, Abdullah WA, Lee CL.
Ceftazidime-resistant Klebsiella pneumoniae bloodstream infection in children with febrile neutropenia.
Int J Infect Dis. 2000; 4, pp. 21-5. | Prospective prevalence study. | CRKP seen in 51.6% of all isolates.
Prolonged hospital stay (>2weeks) & prior use of Ceph3 are at high risk of CRKP bacteremia.
Sepsis-related mortality higher in CKRP group (50% vs 13.3%; p=0.02) | Poor Single center study.
Local epidemiology may vary. Importance of CRKP in the local setting emphasised. |
| 14 | Klaassen RJ, Allen U, Doyle JJ.
Randomized placebo-controlled trial of oral antibiotics in pediatric oncology patients at low-risk with fever and neutropenia.
N=73 pts (N=37 on oral cloxa & cefixime & N=36 on placebos) | 5(14%) pts in A/B arm and 2(6%) in placebo arm were readmitted to hospital with recurrent fever while still neutropenic.
All readmissions were uneventful and no fatalities. | Good to fair Small sample size.
Supports discontinuation of A/B in low-risk patients with neutropenia on d/c. |
| 15 | Petrilli AS, Dantas LS, Campos MC, Tanaka C, Ginani VC, Seber A.
Oral ciprofloxacin vs. intravenous ceftriaxone administered in an outpatient setting for fever and neutropenia in low-risk pediatric oncology patients: randomized prospective trial.
Low-risk patients (N = 70) with episodes of fever and neutropenia (N = 116) were randomized to receive either oral ciprofloxacin or intravenous ceftriaxone as outpatients. | The mean duration of neutropenia was 5 vs. 6 days.
Fever persisted for 1-9 days (mean 2 vs. 3 days).
Therapy was successful with no modifications in 83% vs. 75% of the episodes.
Patients were admitted in 7% vs. 4% of the episodes.
No bone or joint side effects were seen in either group.
All patients survived.
Outpatient therapy with either oral ciprofloxacin or intravenous ceftriaxone for fever and neutropenia is effective and safe in pediatric patients with solid tumors and stage I/II non-Hodgkin lymphoma (low-risk patients). | Good to fair Small sample size. |
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal, Year</th>
<th>Study Type, Sample size, Follow up</th>
<th>Outcome & Characteristics</th>
<th>Grade and & Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Ramphal R.</td>
<td>Review</td>
<td>MonoRx is effective & less costly. Cefepime/ceftazidime/meropenem MonoRx is a viable therapeutic approach.</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Is monotherapy for febrile neutropenia still a viable alternative?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Feld R.</td>
<td>Review</td>
<td>no need to add vancomycin, in initial empirical Rx. Most experts recommend vancomycin not be part of initial empirical Rx.</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Vancomycin as part of initial empirical antibiotic therapy for febrile neutropenia in patients with cancer: pros and cons.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clin Infect Dis 1999; 29:503-7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Tomlinson RJ, Ronghe M, Goodbourne C, Price C, Lilleyman JS, Das S et al.</td>
<td>N=59 pts with 113 febrile episodes</td>
<td>86/113 (76%) episodes settled with first line antibiotic regimen. No failure of Rx in organisms sensitive to gentamycin. No vestibular toxicity, 3/30 (10%) children underwent PTA reported high frequency hearing loss in one ear. OD gentamycin can be used safely & effectively. When used for short periods (<5d), in children not receiving other nephrotoxic drugs & who have normal serum creatinine, serum gentamycin. Estimations are unnecessary.</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td>Once daily ceftriaxone and gentamicin for the treatment of febrile neutropenia.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

55
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal, Year</th>
<th>Study Type, Sample size, Follow up</th>
<th>Outcome & Characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
</table>
N=116 episodes (84 patients in the oral-therapy group and 79 patients in the intravenous-therapy group). | Treatment was successful without the need for modifications in 71 percent of episodes in the oral-therapy group and 67 percent of episodes in the intravenous-therapy group (difference between groups, 3 percent; 95 percent confidence interval, -8 percent to 15 percent); Inability to tolerate the regimen in 16 percent and 1 percent of episodes, respectively. Incidence of intolerance of the oral antibiotics was 16 percent, as compared with 8 percent for placebo. | Good |
Patients were evaluated, received a single dose of intravenous ceftazidime, and were observed for 3-16 hours. | Seventy-three episodes of F&N in 41 patients. 31 of 33 episodes in the ceftazidime arm, the patients remained outpatients, compared with 32 of 40 in the ciprofloxacin arm; this difference was not statistically significant. Carefully selected low risk children with fever and neutropenia can be treated safely as outpatients. | Good to Fair
Small sample size. |
| 21 | Castaglonola E, Paola D, Giacchino R, Rossi R, Viscoli C. | Acquisition costs of various drugs calculated. | Ceftriax. + aminoglyco are less expensive compared to other regimens eg. Mono Rx with Cephalosporins or carbapenems. | Poor
Acquisition costs may vary locally. |
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal, Year</th>
<th>Study Type, Sample size, Follow up</th>
<th>Outcome & Characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Gaya H. Empirical therapy of infections in neutropenic patients. British J Haematol 1998; 101(1S):5-9.</td>
<td>Review.</td>
<td>Empiric antibiotic therapy for febrile neutropenia is standard practice. Carbapenem monotherapy may be as effective as combination with beta-lactam and aminoglycoside. Low risk patients may be treated on an ambulatory basis. Broad coverage for gram-negative pathogens is essential. Antibiotic resistance pattern should be considered.</td>
<td>Poor Expert review.</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal, Year</td>
<td>Study Type, Sample size, Follow up</td>
<td>Outcome & Characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>26</td>
<td>Krivoy N, Postovsky S, Elhasid R, Ben Arush MW. Pharmacokinetic analysis of amikacin twice and single daily dosage in immunocompromised pediatric patients. Infection 1998 Nov-Dec; 26(6):396-8</td>
<td>Ten children received amikacin twice daily and 13 were treated using the single daily protocol.</td>
<td>A single daily dose of amikacin had a significantly longer elimination half-life, lower clearance, higher peak concentration and lower trough concentration in comparison to the twice-daily schedule. The use of amikacin 20 mg/kg daily delivered in a single daily dose is recommended for immunocompromised pediatric patients with fever and neutropenia, in spite of the measured pharmacokinetic differences.</td>
<td>Fair Small sample size.</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal, Year</td>
<td>Study Type, Sample size, Follow up</td>
<td>Outcome & Characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------</td>
<td>-------------------------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>28</td>
<td>Viscoli C, Paesmans M, Sanz M, Castagnola E, Klastersky J, Martino P, Glauser M. Association between antifungal prophylaxis and rate of documented bacteremia in febrile neutropenic cancer patients. Clin Infect Dis 2001 Jun 1;32(11):1532-7</td>
<td>Retrospective analysis. N=3002 febrile neutropenic patients F/up : 1986-1994.</td>
<td>Globally, 1322 patients (44%) did not receive antifungal prophylaxis; 835 (28%) received poorly absorbable antifungal agents and 845 (28%) received absorbable antifungal agents. The rates of bacteremia for these groups were 20%, 26%, and 27%, respectively In a multivariate model without including antifungal prophylaxis, factors associated with bacteremia were: age, duration of hospitalisation, duration of neutropenia before enrollment, underlying disease, presence of an intravenous catheter, shock, antibacterial prophylaxis, temperature, and granulocyte count at onset of fever. When antifungal prophylaxis was included, the adjustment quality of the model improved slightly, with an odds ratio of 1.19 for patients receiving nonabsorbable and 1.42 for those who were receiving absorbable antifungal agents. Antifungal prophylaxis with absorbable agents might have an impact on the rate of documented bacteremia in febrile neutropenia.</td>
<td>Fair</td>
</tr>
<tr>
<td>No</td>
<td>Title, Author, Year</td>
<td>Type of Study, sample Size, follow up</td>
<td>Characteristics and Outcome</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>----------------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 1 | Dawson KG, Emerson JC, Burns JL
15 years of experience with bacterial meningitis
Pediatr Infect Dis J 1999 Sept; 18(9): 816-22 | Retrospective study
N=806 cases
F/U- 1981-1995 | Commonest cause of bacterial meningitis was H influenza, Strep pneumonia and N meningitides
Changing pattern of meningitis was observed after introduction of the unconjugated and conjugated vaccine
H influenza was the commonest organism for the first 2 periods. Dropped to third place in the 3rd 5th period. No of cases caused by Streptococcus pneumonia and Neisseria meningitides have remained steady | Poor |
| 2 | Kuruvilla KA, Thomas N
Neonatal group B streptococcal bacteremia in India : 10 years experience
Acta Pediatric 1999 Sep: 88(9): 1031-2 | Observational | In perinatal center in India with 60,119 live births between 1988-1997, GBS isolated from blood C&S of 10 babies. (incidence 0.17/1000 LB)
No cases of late onset disease. Low incidence could be due to low rate of colonization & high prevalence of protective antibody in mothers. | Poor |
| 3 | Lee HJ
Epidemiology of systemic Haemophilus influenza diseases in Korean children
Pediatr Infect Dis J 1998 Sep 17 (Suppl 9) S185-189 | Epidemiology | 48 H influenza infections
25 meningitis
44% < 1 year old
92% < 5 years old | Poor |
| 4 | Hussein Imam, Sofiah Ali, Ong LC
Haemophilus influenza meningitis in Malaysia
Pediatr Infect Dis J 1998,Sep 17(Suppl 9) S 189-90 | Retrospective cCross sectional
N=435 patients | Overall incidence in first 5 years of life: 76.6/100 000 per year
Haemophilus influenza meningitis accounted for 48% of all bacteriological proven cases | Poor |
<table>
<thead>
<tr>
<th>No</th>
<th>Title, Author, Year</th>
<th>Type of Study, sample Size, follow up</th>
<th>Characteristics and Outcome</th>
<th>Grade and Comments</th>
</tr>
</thead>
</table>
| 5 | Sung RY, Senok AC, Oppenheimer SJ, Davies DP
Meningitis in Hong Kong children with special reference to the infrequency of haemophilus influenza and the meningococcal infection
N= 85 children
F/U -9 year period | Mycobacterium bacteria was the commonest aetiological agent for meningitis in Hong Kong -15.3%
The incidence of Haemophilus influenza and meningococcal meningitis was very low.
Annual incidence rate of bacterial meningitis not including TB In children<5 years old : 5.2/100 000
For children >5 but > 15 years old: 1.6/100 000
Meningococcal disease <5 years of age: 13/100 000. All occurred in Vietnamese children | Poor |
| 6 | Almuneef M, Memish Z, Khan Y et al
Childhood bacterial meningitis in Saudi Arabia
J Infect 1998,36(2): 157-60 | Retrospective study
N= 70 children over a 11 years study period | Causative organisms: Haemophilus influenza 66%,
Strep pneumonia 24%, N meningitides 4%, Gp B Strep 4%, Staph aureus:2%, Only I case resistant to penicillin
Haemophilus influenza meningitis is the predominant meningitis. | Poor
The Hib vaccine was not available during the study period |
| 7 | McIntyre PB, Berkey CS,King SM et al
Dexamethasone as adjunctive therapy in bacterial meningitis A meta-analysis of randomized clinical trials since 1988
JAMA 1997 Sep 17, 278(11): 925-31 | Meta analysis | Adjunctive dexamethasone therapy reduced severe hearing loss for H influenza type b meningitis whether dexamethasone was given before or with antibiotics.
For strep pneumonia meningitis, there was a suggested protection against hearing loss only if given earlier. For all organisms combined the pooled odds ratio suggested protection against neurological deficits other than hearing loss but this is not significant. Limiting dexamethasone to 2 days may be optimal | Good |
<table>
<thead>
<tr>
<th>No</th>
<th>Title, Author, Year</th>
<th>Type of Study, sample Size, follow up</th>
<th>Characteristics and Outcome</th>
<th>Grade and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Arditi M; Mason EO, Bradley JS et al
Three year multicenter surveillance of pneumococcal meningitis in children, clinical characteristics and outcome related to penicillin susceptibility and dexamethasone use
 Pediatrics 1998 Nov; 102(5): 1087-97</td>
<td>Retrospective chart review
N=180
F/up: 3 year period -Sept 1993 to August 1996</td>
<td>Results-7.7% deaths, 25% neurological deficits 32% unilateral and bilateral hearing deficits at discharge. 12.7% and 6.6% pneumococcal isolates have intermediate and complete resistance to penicillin respectively. 4.4% have intermediate resistance to ceftriaxone. 40% of children were given Dexamethasone. Dexamethasone had no beneficial effect to reduce disease severity. Incidence of moderate to severe hearing loss was higher in the dextro group (46% vs 23%). incidence of neurological deficits including hearing loss was also higher in the dextro group (55%vs33%)</td>
<td>Poor</td>
</tr>
<tr>
<td>9</td>
<td>Stanek RJ, Mufson MA
A 20- year epidemiology study of pneumococcal meningitis
Clin Inf Dis 1999 Jun;28 (6) 1265-72</td>
<td>Retrospective study
N=55 Strep pneumonia meningitis (adult and child)
F/up:1978-1997</td>
<td>14 (36.8%) of 38 adults died, 2(11.8%) of 17 children died due,serotypes 6,23,13,18 were predominant,serotype 19(1),serotype 23(2),The above serotypes have moderate to high resistance to penicillin Multidrug resistance emerged during this period Due to emergence of penicillin non-susceptible pneumonia treatment regimens now include cephalosporins and vancomycin</td>
<td>Poor</td>
</tr>
<tr>
<td>10</td>
<td>Coyle PK
Glucocorticoids in Central Nervous System bacterial infections
pcoyle@ neuro.som.sunny.edu</td>
<td>Review</td>
<td>To evaluate mortality and morbidity rates on adjuvant dexamethasone therapy in CNBS bacterial meningitis including TB meningitis Conclusive only for H influenza meningitis Optimal duration for dexamethasone 2 vs 4 days is still not known</td>
<td>Good to Fair</td>
</tr>
<tr>
<td>No</td>
<td>Title, Author, Year</td>
<td>Type of Study, sample Size, follow up</td>
<td>Characteristics and Outcome</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>-----------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>11</td>
<td>Greenwood B</td>
<td>Review</td>
<td>100 000 to 500 000 deaths from bacterial meningitis. Sickle cell disease and perinatally acquired HIV infections play a role as predisposing factors. Pneumococci infections could be treated with penicillin, a cheap and safe antibiotic. Pneumococci that are resistant to penicillin is becoming prevalent</td>
<td>Poor</td>
</tr>
<tr>
<td>12</td>
<td>Gold R</td>
<td>Epidemiology study</td>
<td>Bacterial meningitis caused by Haemophilus influenza type b has almost disappeared in USA, Canada and other countries after implementation of routine vaccination. Overall incidence of meningitis has decreased by 50% Clusters of meningococcal disease in school children (serotype 2a) Age of susceptibility has shifted to adult patients</td>
<td>Poor</td>
</tr>
<tr>
<td>13</td>
<td>Limcangco MR, Salole EG, Armour CL</td>
<td>Cohort study N= 415 992 children less than 5 years old is the study population F/U- Jan 1994-Dec 96</td>
<td>Hib meningitis in central Manila is common. Confirmed cases of Hib meningitis in 118. Particularly high in <6/12months age group. 15 % sequelae, 1% case fatality rate Adverse neurological outcomes and high case fatality rates in children less than 1 year of age</td>
<td>Poor</td>
</tr>
<tr>
<td>14</td>
<td>Skoczynska A, Kriz P, Konradsen HB et al</td>
<td>N=220 isolates were sent to NRBCM F/U- 1997-1998</td>
<td>N meningitis(40.9%), H influenza (26.4%), S pneumonia(20.9%). Of the meningococcal isolates, 88.9% were serogroup B and 10% were serogroup C.10% had reduced susceptibility to penicillin 90% of H influenza belonged to type b. All were sensitive to third generation cephalosporin and CMC. Amongst pneumococcal isolates, 13 % were not susceptible to penicillin</td>
<td>Poor</td>
</tr>
<tr>
<td>No</td>
<td>Title, Author, Year</td>
<td>Type of Study, sample Size, follow up</td>
<td>Characteristics and Outcome</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>---------------------</td>
<td>-------------------------------------</td>
<td>----------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>15</td>
<td>Shembesh NM, Elbargarthy SM, Kashbur IM</td>
<td>Dexamethasone as an adjunctive therapy of bacterial meningitis</td>
<td>N= 77 Libyan children with bacterial meningitis from the ages of 1 month to 10 years</td>
<td>CSF sugar, protein and PMNL were compared between both groups. Significant difference between the 2 groups Dexamethasone: decreased the duration of fever and had no changes on the neurological deficit or fatality rates</td>
</tr>
<tr>
<td>16</td>
<td>Eriksson M, Henriques B, Ekdahl K</td>
<td>Epidemiology of pneumococcal infections in Swedish children</td>
<td>Retrospective review of 10 year. Cases of meningitis in Northern Stockholm</td>
<td>Meningitis is the most severe manifestation. Prevalence: 10/100 000 in (0-2 years) age grp and 5.8/100 000 (0-5 years) Serotype 7,6,14,23. Decreasing order sensitivity to penicillin (0.2%-11%). Severe sequelae seen in 20%. Large proportion of serotype7. At present 7-9 valent protein conjugated vaccine Heptavalent 4,6b,9v,18c,19f,23f, Converge 18% of resistant isolates</td>
</tr>
<tr>
<td>17</td>
<td>Spanjaard L, van der Ende A</td>
<td>Epidemiology of meningitis and bacteraemia due to Streptococcus pneumonia in the Netherlands The Netherlands ref lab for bacterial meningitis</td>
<td>Cross sectional study</td>
<td>Pneumococcal meningitis incidence rate: 1/100 000 in 1990 to 1.5/100 000 in 1996 Highest incidence < 5 years (8.2/100 000 in 1999) Serotype 3,6b,9v,14,18c,19f,23f are prevalent Pneumococcal resistance to penicillin 1%</td>
</tr>
<tr>
<td>18</td>
<td>Uduman SA, Adeyani E, El Khadir A</td>
<td>H influenza type b meningitis still remains a leading cause of meningitis among unvaccinated children: Prospective CSF analysis study</td>
<td>Prospective hospital based CSF analysis.</td>
<td>H influenza meningitis diagnosed by positive CSF C&S in 4 and by antigen detection in 9. Strep pneumonia meningitis diagnosed by positive CSF C%S in 1 and by antigen detection in 3. 42 children had normal CSF studies Leading cause of meningitis; Haem influenza. Incidence rate Hib meningitis; 31/100 000 children< 5</td>
</tr>
<tr>
<td>No</td>
<td>Title, Author, Year</td>
<td>Type of Study, sample Size, follow up</td>
<td>Characteristics and Outcome</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>-----------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>19</td>
<td>Principi N, Marhisio, P
Epidemiology of Streptococcus pneumonia in Italian children
<i>Acta Paediatr Suppl</i> 2000 Dec; 89 (435): 40-3</td>
<td>Cross sectional study</td>
<td>Incidence rate 1.1/100 000 0-4 years. Incidence of penicillin resistance is 10.2%.
Serotypes 14,6,23,1,4 in decreasing order resistant to penicillin.
Incidence of macrolide resistance 25%</td>
<td>Poor</td>
</tr>
<tr>
<td>20</td>
<td>Rotbart HA,
Treatment of potentially life- threatening Enterovirus infections with pleconoril
<i>Clin Infect Dis</i> 2001 Jan 15,32 (2): 228-35</td>
<td>Prospective cohort study
N=38. There were 15 patients ≤ 16 years old and 6 with neonatal enterovirus infections</td>
<td>Clinical response is (defined as diminishment of ≥ than 1 of the prominent presenting symptoms and signs)-28 of 36 had favorable response (78%). Virological response (defined as reversion from Enterovirus culture positive to Enterovirus culture negative)-12 out of 13 Laboratory responses (normalization or substantial improvement in a previously abnormal lab characteristic for the specific disease)-14 out of 16 Radiological responses (objective improvements in the findings of MRI or technetium-99 m bisicate brain scanning or CXR before and after therapy): 3 out of 5 Adverse effects: nausea, vomiting, fatigue weakness and others. 7 patients classified as severe, 23 as moderate and 11 as mild and 8 deaths.</td>
<td>Poor
Not all adverse effects was detailed in the paper</td>
</tr>
<tr>
<td>22</td>
<td>McMinn P, Stratov I, Nagarajan L
Neurological manifestations of EV 71 infection in children during an outbreak of hand, foot and mouth disease in Western Australia
<i>Clin Infect Dis</i> 2001; Jan 15:32 (2): 326-42</td>
<td>Feb 99 through Sept 99 EV outbreak in Perth, Western Australia involving 16 children 14 culture proven (64%) had severe neurological disease Varied neurological disease These were: Aseptic meningitis Guillain barre syndrome Acute transverse myelitis Acute cerebellar ataxia</td>
<td>Clinically indistinguishable form Coxsackie virus a16 infections, EV71 isolated from stool, nasopharynx, skin vesicle and CSF, Serology: Assay of EV71 specific antibodies in serum samples by microneutralization techniques during acute and convalescent phases
No effective antiviral therapy, IV IG was administered in 4 patients: No benefit</td>
<td>Poor</td>
</tr>
<tr>
<td>No</td>
<td>Title, Author, Year</td>
<td>Type of Study, sample Size, follow up</td>
<td>Characteristics and Outcome</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>----------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>23</td>
<td>Mc Grath N, Anderson NE, Croxson MC, Powell KF</td>
<td>Prospective N= 42 patients and all patients were given Acyclovir</td>
<td>Diagnosed via the following techniques: Herpes simplex virus culture from brain Increase in CSF HSV antibody titre Detection of HSV deoxyribonucleic acid in CSF Acyclovir decreased mortality in HSV encephalitis. 30% of patients died or developed severe neurological deficits 70% regained independence in activities of daily living</td>
<td>Poor</td>
</tr>
<tr>
<td>24</td>
<td>Utley TF Oigden JA</td>
<td>22 adults confirmed HSE –acyclovir treated All under went neuropsychological assessment</td>
<td>Conclusion: better cognitive function found in participants where there was a short delay (<5/7) between onset of symptoms and acyclovir treatment</td>
<td>Poor</td>
</tr>
<tr>
<td>25</td>
<td>Hsiung GD, Wary JR</td>
<td>Enteroviruses : large group of immunologically distinct serotypes Picornoviruses</td>
<td>Many cause infections EV 71 epidemiology in Taiwan in 98 was a fatal infection Polio V, Coxsackie A,Coxsackie B, ECHO Enterovirus 68-71, Virus isolation : Best method of is CNS isolation : maybe by PCR, Final identification serotyping of enteroviruses using monoclonal antibody, pleconoril orally bioavailable</td>
<td>Poor</td>
</tr>
<tr>
<td>26</td>
<td>Farida Jamal</td>
<td>Review</td>
<td>1987 : 90 isolates, 4.7% penicillin resistant 1995 : 86 isolates, 8% penicillin resistant 996 : 300 isolates, 7.8% penicillin resistant</td>
<td>Poor</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal, Year</td>
<td>Study Type, Sample size, Follow up</td>
<td>Outcome & Characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1</td>
<td>Toikka P, Juven T, Virkki R, Leinonen M, Mertsola J, Ruuskanen O</td>
<td>Case report N=254 patients CAP</td>
<td>Evidence of Streptococcus pneumoniae and Mycoplasma pneumoniae coinfection in 9 patients are described. M pneumoniae was diagnosed in 17 patients.</td>
<td>Poor</td>
</tr>
<tr>
<td>2</td>
<td>Drummond P, Clark J, Wheeler J, Galloway A, Freeman R, Cant A</td>
<td>Prospective study N=136 patients</td>
<td>19 (14%) a bacterium (7%) group A Streptococcus, 4% Streptococcus pneumoniae, Pneumococcal pneumonia was the most common bacterial cause of under 2 years but not in older children Fifty (37%) had a virus implicated (65% respiratory syncytial virus) Viral infection accounted for 71% of the cases</td>
<td>Poor</td>
</tr>
<tr>
<td>3</td>
<td>McCracken GH</td>
<td>Review</td>
<td>Streptococcus pneumoniae as the primary bacterial cause of pneumonia in infants and children. In developed countries S. pneumoniae. Probably accounts for 25 to 30% of cases of pediatric community-acquired pneumonia. Chlamydial infections become more prevalent with increasing age. Mycoplasma infections become more prevalent with increasing age. Viral etiologies become less prevalent with increasing age.</td>
<td>Poor</td>
</tr>
<tr>
<td>4</td>
<td>Clements H, Stephenson T, Gabriel V, Harrison T, Millar M, Smyth A, Tong W, Linton CJ</td>
<td>Retrospective and prospective audit N= 89 children</td>
<td>51 microbiological diagnoses were achieved in 48 children. Seven children had Streptococcus pneumoniae infection, 14 children had Mycoplasma infection 51 microbiological diagnoses were achieved in 48 children. Twenty-three children had a viral cause of which respiratory syncytial virus was commonest</td>
<td>Poor</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal, Year</td>
<td>Study Type, Sample size, Follow up</td>
<td>Outcome & Characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>5</td>
<td>Rowe AK, Deming MS, Schwartz B, Wasas A, Rolka D, Rolka H, Ndoyo J, Klugman KP</td>
<td>A cross-sectional survey N=371 ill children</td>
<td>NPA cultures Out patients 272 SP 73 HI</td>
<td>Poor</td>
</tr>
<tr>
<td>6</td>
<td>Juven T, Mertsola J, Waris M, Leinonen M, Meurman O, Roivainen M, Eskola J, Saikku P, Ruuskanen O</td>
<td>Prospective study N=254 children F/up:3-year</td>
<td>A potential causative agent was detected in 215 (85%) of the 254 patients. 53% had bacterial infection. 30% had evidence of concomitant viral-bacterial infection. Streptococcus pneumoniae (37%), 1 out of 125 blood cultures were positive. A potential causative agent was detected in 215 (85%) of the 254 patients. Sixty-two percent of the patients had viral infection of which respiratory syncytial virus (29%) and rhinovirus (24%)</td>
<td>Poor</td>
</tr>
<tr>
<td>7</td>
<td>Levine OS, Liu G, Garman RL, Dowell SF, Yu S, Yang YH</td>
<td>Non randomized control study N=96 patients (214 age-matched control)</td>
<td>Pneumonia patients were more likely to be colonized S. pneumoniae than control patients</td>
<td>Good to fair</td>
</tr>
<tr>
<td></td>
<td>Haemophilus influenzae type b and Streptococcus pneumoniae as causes of pneumonia among children in Beijing, China. Emerg Infect Dis 2000 Mar-Apr; 6(2): 165-70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal, Year</td>
<td>Study Type, Sample size, Follow up</td>
<td>Outcome & Characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>8</td>
<td>Ruuskanen O, Mertsola J</td>
<td>Review</td>
<td>Streptococcus pneumonia, Mycoplasma pneumoniae, and respiratory syncytial virus are the most common causative agents. Streptococcus pneumoniae, Mycoplasma pneumoniae, and respiratory syncytial virus are the most common causative agents. Streptococcus pneumoniae, Mycoplasma pneumoniae, and Respiratory syncytial virus are the most common causative agents.</td>
<td>Poor</td>
</tr>
<tr>
<td>9</td>
<td>Greenwood B</td>
<td>Review</td>
<td>Streptococcus pneumoniae (pneumococcus) is the most important bacterial cause of pneumonia in young children</td>
<td>Poor</td>
</tr>
<tr>
<td>10</td>
<td>Wubbel L, Muniz L, Ahmed A, Trujillo M, Carubelli C, McCoig C, Abramo T, Leinonen M, McCracken GH</td>
<td>Randomized controlled trial N=174 patients, (68 of whom fulfilled protocol criteria for evaluation) F/u: 6 months to 16 years</td>
<td>Etiologic agents were identified in 73 (43%) of 168 patients. Infection was attributed to S. pneumoniae in 27% (35 of 129)</td>
<td>Good to fair</td>
</tr>
<tr>
<td>11</td>
<td>Heiskanen-Kosma T, Korppi M, Jokinen C, Kurki S, Heiskanen L, Juvonen H, Kallinen S, Sten M, Tarkiainen A, Ronnberg PR, Kleemola M, Makela PH, Leinonen M</td>
<td>Cohort studies prospective N=201</td>
<td>Serologic evidence of specific microbial etiology was obtained in 133 (66%). Streptococcus pneumoniae was the most common agent (57 cases; 28%). S. pneumoniae is an important organism in the etiology of community-acquired pneumonia in children of all ages.</td>
<td>Fair</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal, Year</td>
<td>Study Type, Sample size, Follow up</td>
<td>Outcome & Characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>-------------------------------</td>
<td>------------------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 12 | Tran TT, Le QT, Tran TN, Nguyen NT, Pedersen FK, Schlumberger M
The etiology of bacterial pneumonia and meningitis in Vietnam.
Pediatr Infect Dis J 1998 Sep; 17(9 Suppl): S192-4 | Descriptive studies
N=213 bacteremic pneumonia cases | 92.5% of blood cultures grew Streptococcus pneumoniae and only 1% grew Hib. | Poor |
Study on Haemophilus influenzae type b diseases in China: the past, present and future.
Pediatr Infect Dis J 1998 Sep; 17(9 Suppl): S159-65 | Review | About one-fourth to one-third of cases of pneumonia in Chinese children is a result of Hib. | Poor |
| 14 | Vuori E, Peltola H, Kallio MJ, Leinonen M, Hedman K
Etiology of pneumonia and other common childhood infections requiring hospitalization and parenteral antimicrobial therapy. SE-TU Study Group
Clin Infect Dis 1998 Sep; 27(3): 566-72 | Descriptive studies
N=170 children aged 3 months to 15 | Pathogenic agent was identified in 62% of the cases. Bacteria were detected in 54%, and a pneumococcus was found in 59% of the cases. Pathogenic agent was identified in 62% of the cases. Bacteria were detected in 54%, and a Viruses were found in 15% overall. | Poor |
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal, Year</th>
<th>Study Type, Sample size, Follow up</th>
<th>Outcome & Characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Gendrel D, Raymond J, Moulin F, Iniguez JL, Ravilly S, Habib F, Lebon P, Kalifa G</td>
<td>Descriptive study N=104 children ages 18 months to 13 years.</td>
<td>Potential respiratory pathogens were identified in 87 (85%) cases; Streptococcus pneumoniae seen in 14 cases</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Etiology and response to antibiotic therapy of community-acquired pneumonia in French children</td>
<td></td>
<td>Potential respiratory pathogens were identified in 87 (85%) cases; these included respiratory syncytial virus in ten, Streptococcus pneumoniae in 14 and Mycoplasma pneumoniae (diagnosed by serologic procedures) in 43. Respiratory pathogens were identified in 87 (85%) cases. These included Respiratory syncytial virus in ten, Streptococcus pneumoniae in 14 and Mycoplasma pneumoniae (diagnosed by serologic procedures) in 43</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Martinez Tagle M, Kogan R, Rojas P, Rubilar L, Vidal R, Paya E</td>
<td>Prospective N=112 children aged 1 month to 14 years.</td>
<td>C. pneumoniae plays a minor role in the aetiology of pneumonia in children less than 9 y of age in Chile.</td>
<td>Poor</td>
</tr>
<tr>
<td>17</td>
<td>Chugh K</td>
<td>Review</td>
<td>Chlamydia pneumoniae are common in school age children Chlamydia trachomatis occurs in early infancy.</td>
<td>Poor</td>
</tr>
<tr>
<td>18</td>
<td>Nelson JD</td>
<td>Review</td>
<td>Mycoplasma and chlamydia infection are common in the school going age of 5-15yrs. Mycoplasma pneumoniae are common in school age children. Mycoplasma and chlamydia infections are common in the school going age of ages 5-15yrs. Adenovirus and parainfluenzae are common in infancy</td>
<td>Poor</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal, Year</td>
<td>Study Type, Sample size, Follow up</td>
<td>Outcome & Characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 19 | Heiskanen-Kosma T, Korppi M, Laurila A, Jokinen C, Kleemola M, Saikku P | Cohort studies
N= 8851 children in the area of 4 municipalities
F/up: 12 months | 29 cases of Chlamydia, 9% of the cases was children aged 5-9 y and 31% for those aged 10 years or more. Our results indicate that C. pneumoniae is an important cause of community-acquired pneumonia in school-aged children | Fair |
| | | | | |
N=174 patients, 68 of whom fulfilled protocol criteria for evaluation
F/u: 6 months to 16 years | Etiologic agents were identified in 73 (43%) of 168 patients, C. pneumoniae in 6% (10 of 168). Etiologic agents were identified in 73 (43%) of 168 patients. Infection was attributed to M. pneumoniae in 7% (12 of 168). None of the swab specimens from 75 healthy control children was positive for C. pneumoniae or M. pneumoniae. | Good to fair |
| | | | | |
N= 201 | Serologic evidence of specific microbial etiology was obtained in 133 (66%). Chlamydia spp. (29; 14%) Chlamydia infections in patients > or =10 years of age. M. pneumoniae and Chlamydia pneumoniae are important from the age of 5 years onwards. Serologic evidence of specific microbial etiology was obtained in 133 (66%). Mycoplasma pneumoniae (44; 22%). Mycoplasma infections were seen mostly in patients > or =5 years. M. pneumoniae are important from the age of 5 years onwards. Serologic evidence of specific microbial etiology was obtained in 133 (66%). Respiratory syncytial virus seen in 43; (21%) pneumonia in children of all ages. | Fair |
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal, Year</th>
<th>Study Type, Sample size, Follow up</th>
<th>Outcome & Characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>McCracken GH, Etiology and treatment of pneumonia. Pediatr Infect Dis J 2000 Apr;19(4):373-7</td>
<td>Review</td>
<td>Mycoplasma pneumoniae occur commonly in older children. Viruses (mostly respiratory syncytial virus) are responsible for approximately 20% of cases.</td>
<td>Poor</td>
</tr>
<tr>
<td>23</td>
<td>Chaudhry R, Nazima N, Dhawan B, Kabra SK, Prevalence of Mycoplasma pneumoniae and Chlamydia pneumoniae in children with community acquired pneumonia. Indian J Pediatr 1998 Sep-Oct;65(5):717-21</td>
<td>Prospective study N=62 children F/U-1 year study</td>
<td>70 (27.4%) were found to have serological evidence of M. pneumoniae infection. Results of this study indicate that M. Pneumoniae plays a significant role in CAP in infants and young children.</td>
<td>Poor</td>
</tr>
<tr>
<td>24</td>
<td>Sonoda S, Gotoh Y, Bann F, NakayamaT, Acute lower respiratory infections in hospitalized children over a 6 year period in Tokyo. Pediatr Int 1999 Oct;41(5):519-24</td>
<td>Descriptive studies N=1521 patients</td>
<td>Etiological agents were identified in 668 s (43.9%) by serological antibody responses, 75 (4.9%) with Mycoplasma pneumoniae; Influenza virus and M. pneumoniae were two main causative agents in patients with acute respiratory illness over 5 years of age. Etiological agents were identified in 668 s (43.9%), 240 (15.8%) with respiratory syncytial (RS) virus; 62 (4.1%) with influenza virus type A; 26 (1.7%). Respiratory syncytial (RS) virus was a main causative agent of respiratory infections in patients younger than 3 years of age.</td>
<td>Poor</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal, Year</td>
<td>Study Type, Sample size, Follow up</td>
<td>Outcome & Characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 25 | Heiskanen-Kosma T, Korppi M, Laurila A, Jokinen C, Kleemola M, Saikku P | Cohort studies
N=8851 children in the area of 4 municipalities
F/up:12 months | Mycoplasma pneumoniae serology (CF) was positive in 44 patients (22%). | Fair |
| 26 | Harris JA, Kolokathis A, Campbell M, Cassell GH, Hammerschlag MR | Multicenter trial
N= 456 patients 420 were evaluable | Evidence of infection was identified in 46% of 420 patients (1.9% bacteria, 29.5% M. pneumoniae and 15% C. pneumoniae). | Poor |
| 27 | Chong CY, Lim WH, Heng JT, Chay OM | Descriptive study
N= 397 children were admitted to acute LRTI compared to 240 children in 1988.
F/up: May 1994 to April 1995. | The most common bacteria infection was M. catarrhalis (34.7%) in 1995 followed by non-type B Haemophilus influenzae (33%). However in 1988, Mycoplasma (33%) was the predominant organism followed by H. influenzae (17%) Etiological agents were found in about 70% of patients in both studies. Viruses constituted 41.3% of the etiologic agents in 1995 but constituted only 28% in 1988. | Poor |
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal, Year</th>
<th>Study Type, Sample size, Follow up</th>
<th>Outcome & Characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Miranda-Novales G, Solorzano-Santos F, Leanos-Miranda B, Vazquez-Rosales G, Palafox-Torres M, Guiscafre-Gallardo</td>
<td>Descriptive studies N=101 children under 5 years of age</td>
<td>The detection for RSV was positive in 24 patients (23.7%). RSV is a common cause of LRTI in children younger than five years old.</td>
<td>Poor</td>
</tr>
<tr>
<td>29</td>
<td>Aggarwal R</td>
<td>Review</td>
<td>Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract disease in infants and young children.</td>
<td>Poor</td>
</tr>
<tr>
<td>30</td>
<td>Chan PW, Goh AY, Chua KB, Kharullah NS, Hooi PS</td>
<td>Descriptive retrospective studies N=5691 children</td>
<td>Young Malaysian children admitted with LRTI had a 22% viral isolation rate and RSV 84% was the commonest virus isolated.</td>
<td>Poor</td>
</tr>
<tr>
<td>31</td>
<td>Videla C, Carballal G, Misirlian A, Aguilar M</td>
<td>Descriptive studies N=168 children under 2 years of age hospitalized due to ALRI</td>
<td>RSV was detected in 36.3% and adenoviruses in 14.3% of the cases (P < 0.0001).</td>
<td>Poor</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal, Year</td>
<td>Study Type, Sample size, Follow up</td>
<td>Outcome & Characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>----------------------------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Hijazi Z, Pacsa A, el-Gharbawy F, Chugh TD, Essa S, el Shazli A, Abd el-Salam R</td>
<td>390 children with LRTI are described</td>
<td>Respiratory syncytial virus was the commonest cause of LRTI.</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Acute lower respiratory tract infections in children in Kuwait.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ann Trop Paediatr 1997 Jun; 17(2):127-34</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pneumonia - Effectiveness

<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal, Year</th>
<th>Study Type, Sample size, Follow up</th>
<th>Outcome & Characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Olivier C</td>
<td>Review</td>
<td>Cefuroxime has been recommended as a component of treatment for community-acquired pneumonia (CAP) in guidelines produced by several groups, including the US and British Thoracic Societies.</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Clinical use of cefuroxime in paediatric community-acquired pneumonia.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paediatr Drugs 2000 Sep-Oct;2(5):331-43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Grant CC, Ingram RJ</td>
<td>Review</td>
<td>The antibiotic of choice for children < or = 5 years of age is oral amoxycillin and for older children and adolescents is oral erythromycin.</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Outpatient treatment of pneumonia.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ruuskanen O, Mertsola J</td>
<td>Review</td>
<td>Macrolides as the first choice in outpatients depending on the clinical picture and severity of the illness.</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Childhood community-acquired pneumonia.</td>
<td></td>
<td>Penicillin G, macrolide or cefuroxime plus macrolide in hospitalized patients.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semin Respir Infect 1999 Jun;14(2):163-72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal, Year</td>
<td>Study Type, Sample size, Follow up</td>
<td>Outcome & Characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>--------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>4</td>
<td>Tsarouhas N, Shaw KN, Hodinka RL, Bell LM</td>
<td>Prospective, randomized blinded, trial. N= 170 patients</td>
<td>There does not appear to be a significant difference between PO amoxicillin and IM penicillin treatment of pediatric patients with presumed bacterial pneumonia.</td>
<td>Good</td>
</tr>
<tr>
<td>5</td>
<td>Straus WL, Qazi SA, Kundi Z, Nomani NK, Schwartz B</td>
<td>Randomized controlled trial in 2 centers. N=595 children, aged 2-59 months, randomly assigned on a 2:1 basis co-trimoxazole (n=398) or amoxycillin (n=197)</td>
<td>Co-trimoxazole provided effective therapy in non-severe pneumonia. For severe, life-threatening pneumonia, however, co-trimoxazole is less likely than amoxycillin to be effective.</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>Co-trimoxazole Study Group. Pakistan Antimicrobial resistance and clinical effectiveness of co-trimoxazole versus amoxycillin for pneumonia among children in Pakistan: randomised controlled trial.</td>
<td></td>
<td></td>
<td>Large RCT Excluded those who have taken antibiotic n the last 48 hours</td>
</tr>
<tr>
<td>6</td>
<td>Rowe AK, Deming MS, Schwartz B, Wasas A, Rolka D, Rolka H, Ndoyo J, Klugman KP</td>
<td>A cross-sectional survey N=371 ill children</td>
<td>SP resistance rates to penicillin, trimethoprim-sulfamethoxazole (TMP-SMX), tetracycline and chloramphenicol were 8.8, 6.3, 42.3 and 9.2%, respectively. HI resistance rates to ampicillin, TMP-SMX and chloramphenicol were 1.4, 12.3 and 0%, respectively. The study recommended that TMP-SMX as the first line treatment for pneumonia in CAR</td>
<td>Poor</td>
</tr>
<tr>
<td>7</td>
<td>Greenwood B</td>
<td>Review</td>
<td>Until recently, pneumococcal infections could be treated effectively with penicillin, a cheap and safe antibiotic. However, pneumococci that are resistant to penicillin are becoming prevalent in many countries.</td>
<td>Poor</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal, Year</td>
<td>Study Type, Sample size, Follow up</td>
<td>Outcome & Characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>8.</td>
<td>Wubbel L, Muniz L, Ahmed A, Trujillo M, Carubelli C, McCoig C, Abramo T, Leinonen M, McCracken GH</td>
<td>Randomized control trial N=174 patients</td>
<td>Clinical response to therapy was similar for the three antibiotic regimens evaluated, including those with infection attributed to bacterial agents. There were no differences in the clinical responses of patients to the antimicrobial regimens studied. Out of the 168 cases, 21 were excluded for clinical evaluation 147 evaluated, 143 were classified as cure.</td>
<td>Good Large RCT</td>
</tr>
<tr>
<td>9.</td>
<td>Tan TQ, Mason EO, Barson WJ, Wald ER, Schutze GE, Bradley JS, Arditi M, Givner LB, Yohev R, Kim KS, Kaplan SL</td>
<td>Multicenter, prospective study. N=254 children had 257 episodes of pneumococcal pneumonia</td>
<td>Of the 257 isolates, 22 (9%) were intermediate and 14 (6%) were resistant to penicillin. 248 patients (97.6%) had a good response to therapy. Six patients died; however, only 1 of the deaths was related to the pneumococcal infection. The clinical presentation and outcome of therapy did not differ significantly between patients with penicillin-susceptible versus those with nonsusceptible isolates of S pneumoniae.</td>
<td>Poor Various combinations of antibiotics were used.</td>
</tr>
<tr>
<td>10.</td>
<td>Camargos PA, Guimaraes MD, Ferreira CS</td>
<td>Randomised controlled trial N=176 children</td>
<td>Evidence of total radiographic clearing was demonstrated for 92.3 and 95.1 per cent of the benzathine penicillin and procaine penicillin groups, respectively (P = 0.54). Benzathine penicillin may be considered an alternative to classic regimens for treating pneumonia due to sensitive strains of S. pneumoniae among children 2-12 years old. Other benefits are its lower cost, better compliance and low rates of adverse reactions.</td>
<td>Good Large RCT</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal, Year</td>
<td>Study Type, Sample size, Follow up</td>
<td>Outcome & Characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
Antibiotic management of pneumococcal infections in an era of increased resistance.
At present, penicillin and _moxicillin remain the drugs of choice for pneumococcal Infections. | Poor |
| 12 | Awasthi S.
Clinical response to two days of oral amoxycillin in children with non-severe pneumonia.
Indian Pediatr 2000 Mar;37(3):301-6 | Descriptive study
Three-fourth cases of non-severe pneumonia in children between 2-59 months of age responded on the third day when administered 5 days treatment with amoxicillin. | Poor |
| 13 | Chong CY, Lim WH, Heng JT, Chay OM
The changing trend in the pattern of infective etiologies in childhood acute lower respiratory tract infection.
N=397 children
F/up: May 1994 to April 1995
No penicillin resistance was detected in 1988. However, in 1995, penicillin resistance was found in 17% of the *Streptococcus pneumoniae*, 38.5% of *H. influenzae* and 83% of *M. catarrhalis*. It was also found that 30% of the *S. pneumoniae* were also resistant to erythromycin, and 23% were resistant to sulfamethoxaxole-trimethoprim. 5% of the *H. influenzae* had multiple resistance to erythromycin, sulfamethoxazole-trimethoprim and chloramphenicol. | Poor |
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal, Year</th>
<th>Study Type, Sample size, Follow up</th>
<th>Outcome & Characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Numazaki K, Sakamoto Y, Umetsu M, Agatsuma Y, Yamanaka T, Kogasaka R, Hiraki M, Kuniya Y, Miua J, Ukae S, Ueda D, Sato T, Chiba S</td>
<td>Multicenter clinical trial N=21 infants and children</td>
<td>Overall clinical efficacy rate was 85.7% (18 of 21 cases). Clarithromycin was considered to be a suitable treatment for improving lower respiratory infections in infants and children caused by C. pneumoniae.</td>
<td>Poor</td>
</tr>
<tr>
<td>15</td>
<td>Heiskanen-Kosma T, Korppi M, Laurila A, Jokinen C, Kleemola M, Saikku P</td>
<td>Descriptive studies. N = 201 F/up:12 months</td>
<td>C. pneumoniae is an important cause of community-acquired pneumonia in school-aged children; serological results of a prospective, population-based study. Macrolides should be considered as an empirical antimicrobial treatment for community-acquired pneumonia, especially in school-aged outpatients.</td>
<td>Poor</td>
</tr>
<tr>
<td>16</td>
<td>Harris JA, Kolokathis A, Campbell M, Cassell GH, Hammerschlag MR</td>
<td>Multicenter, parallel group, double blind trial in which were randomized 2:1. N=420</td>
<td>Microbiologic eradication was 81% for C. pneumoniae in the azithromycin group vs. 100% in the comparator group. (amoxicillin/clavulanate if < or =5 years of age or erythromycin estolate if >5 years of age)</td>
<td>Good</td>
</tr>
</tbody>
</table>

Scand J Infect Dis 1999; 31(3):255-9

SAFETY

<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal, Year</th>
<th>Study Type, Sample size, Follow up</th>
<th>Outcome & Characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
</table>
| 1 | Harris JA, Kolokathis A, Campbell M, Cassell GH, Hammerschlag MR
Pediatr Infect Dis J 1998 Oct; 17(10):865-71 | Multicenter RCT double blind trial randomized
N= 456 patients 420 were evaluated | Microbiologic eradication was 100% for M.pneumoniae in the azithromycin group
Azithromycin used once daily for 5 days produced a satisfactory therapeutic outcome similar to those of amoxicillin/clavulanate or erythromycin given three times a day for 10 days for treatment of community-acquired pneumonia. | Good Large RCT |

COST

<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal, Year</th>
<th>Study Type, Sample size, Follow up</th>
<th>Outcome & Characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
</table>
| 1 | J Al-Eidan FA, McElnay JC, Scott MG, Kearney MP, Troughton KE, Jenkins J
Antimicrob Chemother 1999 Nov; 44(5):709-15 | Descriptive studies
N=89 paediatric patients (44 control and 45 SAT | The SAT patients had a shorter length of hospital stay (4.0 versus 8.3 days), shorter duration of inpatient antimicrobial therapy (4.0 versus 7.9 days) with the period of iv therapy being reduced from a mean of 5.6 to 1.7 days. The total healthcare costs were reduced by 52%. | Fair |
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal</th>
<th>Study design, Sample size, Follow-up</th>
<th>Outcome & characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oda K, Matsuo Y</td>
<td>Retrospective descriptive N=366 episodes of sepsis 244 patients F/U Jan 84 – Dec 98</td>
<td>20% of septic patients were under 1 year of age. 90% had underlying diseases; 55% hematologic disorders or neoplasm. 366 episodes of sepsis, 409 causative agents:, 7% polymicrobial infections, 68% gram positive, 18% staph. Aureus, 37 patients died of sepsis The causative agents of sepsis affected the outcome. GNR significantly higher mortality than gram positive bacteria (25% v 10%,)</td>
<td>Poor</td>
</tr>
<tr>
<td>2</td>
<td>Jamal WY, El-Din K</td>
<td>Retrospective N= 692 patients F/u: 2years</td>
<td>Incidence of bacteremia: 127 (18.4%) 79 deaths, 52% attributable to nosocomial bacteremia Hospital acquired bacteremia in ICU carries a poor prognosis.</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Adult patients included in this study</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Kempf, Volkhard AJ</td>
<td>Letter</td>
<td>Rapid identification of the causative agents in septicaemia is crucial for selecting appropriate antimicrobial agents. Suggested FISH with ribosomal RNA targeted fluorescently labeled oligonucleotide probes for rapid detection and identification of pathogens, without cultivation and biotyping.</td>
<td>Poor</td>
</tr>
<tr>
<td>4</td>
<td>Fisher JE</td>
<td>Observational cohort study N= 456 neonates & children F/up: Sept 98 – March 99</td>
<td>258 (56.6%) received systemic antibiotics = 1815 exposure days (54.6%). 28% prophylaxis, 47% suspected pneumonia, 20% suspected sepsis. 40% had no infection or viral infection during treatment days. The largest reduction in antibiotic treatment would result from measures assisting suspected ventilator-associated pneumonia to be ruled out and from curtailing extended prophylaxis.</td>
<td>Fair</td>
</tr>
</tbody>
</table>

SEPSIS IN CHILDREN
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal</th>
<th>Study design, Sample size, Follow-up</th>
<th>Outcome & characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Leibovici L. The benefits of appropriate empirical antibiotics treatment in patients with blood stream infection J Intern Med. 1998 Nov; 244 (5): 379-86</td>
<td>Prospective cohort N=2158 patients F/up: 1988 – 1994</td>
<td>In-hospital fatality rate: A-20%, B-34% , Length of hospitalization: A-9 days, B-11 days (survived); A-5, B-4 days (died). Appropriate empirical antibiotics treatment was associated with a significant reduction in fatality in patients with bloodstream infection.</td>
<td>Fair</td>
</tr>
<tr>
<td>6</td>
<td>Al Soub H, Estinoso W Hospital-acquired candidaemia: experience from a developing country J Hosp. Infect. 1997 Feb; 35 (2): 141-7</td>
<td>Retrospective study N=37 episodes</td>
<td>Mortality 48.6% , C albicans 56.8%, C. tropicalis 13.5%. No significant difference between patients treated with amphotericin B and those treated with fluconazole.</td>
<td>Poor</td>
</tr>
<tr>
<td>7</td>
<td>Raveh D. Longitudinal surveillance of antibiotics use in the hospital QJM 2001 Mar; 94 (3): 141 – 52</td>
<td>Prospective Comparative N= 2306 patients F/up: 3-4 months</td>
<td>62%± 22% received antibiotics with a range of 4-100% per department. 47% community community acquired infection, 34% hospital, 9% nursing home, prophylaxis 9%,11% sepsis. Half of all antimicrobial use consisted of 4 agents cefuroxime, metronidazole, gentamicin ampicillin = 20 % of expenditure. 53% of antimicrobials surveyed was restricted and accounted for only 29% of all antimicrobial courses.</td>
<td>Poor</td>
</tr>
<tr>
<td>8</td>
<td>Sadow KB Bacterial infections in infants 60 days and younger: epidemiology, resistance, and implications for treatment Arch Pediatr Adolesc Med 1999 Jun; 153(6): 611-4</td>
<td>Retrospective F/U- 1/1/94 – 31/12/97</td>
<td>All positive urine, blood and CSF cultures 367 pathogens, 51% NICU, 41.7% ED, 5.4% ward, 1.9% PICU. 121 pathogens, 77.7% urine, 13.2% blood, 3.3% CSF, 2.5% blood & CSF, 3.3% blood & urine 8 Organisms, 11.6% GBS, 79.3% GNRe – 60% ,ampicillin resistant, (all sensitive to cefotaxime & gentamicin). 0 Listeria. 5.8% Enterococcus. 2.5% Strept pneumoniae. 0.8% Neisseria meningitides. 0 Haemophilus . 0 Staphy aureus.60% GNRe ampicillin resistant.No Listeria isolated. Recommended empiric antibiotics – third generation cephalosporin & gentamicin.</td>
<td>Poor</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal</td>
<td>Study design, Sample size, Follow-up</td>
<td>Outcome & characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>------------------------------------</td>
<td>--------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>9</td>
<td>Szewczyk E M</td>
<td>Review</td>
<td>Isolates mainly S. cohnii, 97% resistant to methicillin, 72 from infants – MRSA mainly S. epidermidis. All susceptible to vancomycin, 30% resistant to mupirocin</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Predominant Staphylococci in the intensive care unit of a pediatric hospital</td>
<td>F/up: 6 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. Hosp Infect. 2000 Jun ;45(2): 145-54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Gray J</td>
<td>Surveillance</td>
<td>131 episodes of BSI. Incidence of BSI 39.0/1000 admissions, 10.6 per 1000 bed days. 84 (64.1%) episodes were ICU acquired, 27 (20.6%) community acquired. 143 isolates of which 62.2% gram positive – Staphy, 30.8% gram negative - Neisseria meningitides, 1.4% anaerobic, 5.6% yeast. Pattern of BSI in PICUs is partly determined by type of patient treated</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Three year survey of bacteremia and fungemia in a PICU</td>
<td>F/up: 3 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Blanc P.</td>
<td>Comparative retrospective and prospective study</td>
<td>The exposures for antibiotic drugs decreased by 19% in 1995 and 22% in 1996. A positive economic impact seen after the implementation of a rational policy in antibiotic therapy.</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Economic impact of a rational use of antibiotics in intensive care</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Alejandria MM, Lansang MA, Dans LF, Mantaring JBV</td>
<td>Randomised control trial.</td>
<td>Twenty-seven out of 55 studies met our inclusion criteria. Poooled analysis of all types of IVIG preparations revealed a significant trend toward reduction of mortality Overall mortality was reduced in patients who received polyclonal IVIG. Mortality was not reduced among patients who received monoclonal antibodies such as anti-endotoxins or anti-cytokines (n=4,318 in 4 good quality studies; RR=0.93; 95% CI 0.86 to 1.01). Polyclonal IVIG significantly reduces mortality and can be used as an adjuvant treatment for sepsis and septic shock.</td>
<td>Good Adjuvant therapy</td>
</tr>
<tr>
<td></td>
<td>Intravenous immunoglobulin for treating sepsis and septic shock (Cochrane Review)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal</td>
<td>Study design, Sample size, Follow-up</td>
<td>Outcome & characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>-------------------------------------</td>
<td>----------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1</td>
<td>Karlowicz MG, Buescher ES, Surlear A/E Fulminant late onset sepsis in a neonatal ICU and the impact of avoiding empiric vancomycin therapy Pediatrics 2000 Dec; 106(6): 1387-90</td>
<td>Retrospective study N=536 infants F/up:over 10 years 1988-1997</td>
<td>Frequency of fulminant sepsis was highest for Ps.sp. and lowest for coagulase negative staphylococci (1 %). 1% = 4 patients, 2 had polymicrobial sepsis, multiple major malformation, thrombus. Actual incidence is 0.7%. Substitution of oxacillin for vancomycin as the empiric antibiotic for gram positive sepsis had no impact on frequency of fulminant sepsis. Empiric antibiotics for treatment of suspected sepsis in infants > 3 days need to effectively treat gm (-) ve pathogens particularly Ps.sp. Avoiding empiric vancomycin therapy is reasonable approach to late onset sepsis.</td>
<td>Fair</td>
</tr>
<tr>
<td>2</td>
<td>Fischer JE Ramser M; Fanconi S, (Swizertant) Use of antibiotics in PICU & potential savings Intensive Care Med 2000 Jul; 26(7): 959-66</td>
<td>Observational study N=2 456 newborn & children</td>
<td>1 258 patients received systemic antibiotics – 1815 exposure days during 3322 hospitalization days. 512 (28 %) were prescribed as prophylaxis and 1303 for suspected infection. Out of this 47 % of 1303 treatment days were for suspected ventilator associated pneumonia. 552 treatment days –(40%) patients had no infection or viral infection. Largest reduction in antibiotic treatment would result from measures assisting suspected ventilator associated pneumonia to be ruled out.</td>
<td>Fair</td>
</tr>
<tr>
<td>3</td>
<td>Benjamin OK; Ross K; Mc Kinney RE When to suspect fungal infection in neonates: A clinical comparison of Candida albicans & C. parapsiloss fungemia with coagulase negative staphylococcal bacteremia Pediatrics 2000 Oct; 106 (4): 712-8</td>
<td>Retrospective review N= 51 patients</td>
<td>Candidemic patients had greater exposure to systemic steroids; antibiotics (29 out of 32 treated with 3 rd generation cephalosporins), catecholamine infusions, mechanical ventilation, less likely to tolerate enteral feeds. Above key features used by clinicians to initiate empiric amphotericin B in neonates at risk.</td>
<td>Fair</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal</td>
<td>Study design, Sample size, Follow-up</td>
<td>Outcome & characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>-------------------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>4</td>
<td>Wagner CL; Wagstaff P; Cox TH; Annibale DJ Early discharge with home antibiotic therapy in the treatment of neonatal infection J.Perinatology 2000 Sep; 20(6): 346-50</td>
<td>Prospective cohort study N= 95 infants in UH F/up: 6 months</td>
<td>Aim: determine feasibility and cost of home antibiotic treatment for a select group of neonates. Infants diagnosed with sepsis, presumed sepsis (62 %) pneumonia (25 %) or uncomplicated meningitis included. Have met prior established criteria for home antibiotic therapy. Mean BW 3160 gm, Mean GA 38.4 weeks Amp/ genta prescribed for 56 % of the cohort, ceftriaxone for 21 % of cohort. Mean age of discharge was 5.2 days. No serious complications or treatment failures, fewer costs of continued in patient treatment. Savings up to 41200-2250.</td>
<td>Fair</td>
</tr>
<tr>
<td>5</td>
<td>Solomon R, Kuruvilla KA Job V, Selvakumar R, Eyaseelan L, Kanagasabapatry AS, Jana AK Randomized controlled trial of once vs twice daily gentamicin therapy in newborn Indian Pediatric 1999 Feb; 36(2) 133-7</td>
<td>Randomised control trial N=73 neonates of GA > 32/52 at risk or with clinical features of sepsis</td>
<td>Patients were randomised to receive single daily dose 4mg/kg or a twice daily dose (2.5mg/kg) of injection iv In preterm & term babies mean peak & trough gentamicin levels were comparable in 2 regimes Once daily gentamicin administration is as effective as twice daily therapy & more cost effective.</td>
<td>Good to fair</td>
</tr>
<tr>
<td>6</td>
<td>Patel DM, Rhodes PG, Le Blanc MH, Graeles GR, Glich C, Morrison J Role of postnatal penicillin prophylaxis in prevention of neonatal group B streptococcus infection Acta Pediatric 1999 Aug; 88(8): 874-9</td>
<td>Prospective N=10,998 infants</td>
<td>The use of penicillin prophylaxis reduced the incidence: a. Clinical sepsis (1.7 % vs. 2.5 % NPP) b. GBS infection 0.4 % PP vs. 0.9 % NPP) c. death from sepsis (0.1 % PP vs 0.3 % NPP) Routine use of postnatal penicillin prophylaxis appears to be effective in reducing the incidence of clinical sepsis and death from sepsis in neonates.</td>
<td>Fair</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal</td>
<td>Study design, Sample size, Follow-up</td>
<td>Outcome & characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>------------------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 7 | Mureen PJ, Reiter PD, Gessores A, Stolpman NM
Once versus twice daily gentamicin dosing in neonates >/= 34 weeks gestation; cost effectiveness analysis.
Pediatrics 1999 Mar; 103(3): 594 – 8 | Prospective Study
N= 56 (27 neonates in ODD group. 28 neonates in TDD group). | 57 % of SGC in TDD group were outside the target concentration range versus 7 % in the OPD group. Based on cost effectiveness analysis ODD was the dominant dosing strategy in all categories analyzed. ODD of gentamicin at 4 mg / kg in neonates >/ = 34 weeks gestation is the preferable. Treatment strategy based on: a. Significantly improved SGC performance compared with TDD. b. Elimination of the need for routine SGC. c. Hospital cost savings. | Fair |
| 8 | Jonsson B, Rylander M, Faxelius G
Urea plasma urealyticum erythromycin and respiratory morbidity in high-risk preterm neonates.
Acta Pediatric 1998 Oct; 87 (10): 1079-84 | Case series
N = 155 preterm ventilated infants mean GA 26 weeks | Colonised infants were randomly assigned to treatment with erythromycin 40mg/k/d iv or orally. In the colonised infants PROM (48% vs 12%), chorioamnionitis (46% vs 17%) and vaginal delivery (71% vs 29%). Colonised infants needed supplemental O2 at 36 postconceptual age (p<0.05) Rate of colonization 19 %. Erythromycin was effective in reducing colonization with negative control cultures in (86%) of treated infants but did not reduce the length of time infants needed supplemental oxygen. | Poor |
| 9 | Baier RJ, Bocchini JA, Brown EG
Selective use of vancomycin to prevent coagulase negative staphylococcal nosocomial bacteremia in high risk very LBW infants
Pediatric Infect Dis J 1998 Mar; 17(3) : 179-83 | Double blind randomised controlled study
N=38 infants with/without CVC randomised to receive no medication or 25 ug/ml VM added to PN (VLBW infants receiving PN in a tertiary NICU | Addition of 25ug/ml of VM to PN prevented bacteremia in VLBW infants receiving PN The total no of hospital days 108 vs 76 were reduced Infants with BW < 1 kg who received corticosteroid for treatment of CLD benefited most – confirmed by multiple logistic regression Prophylactic treatment with Vancomycin effectively prevented CoNS bacteremia under conditions of study. (p = 0.037)Its use was most effective in infants with BW < 1 KG No VM resistant CONS / enterococci detected | Good to Fair |
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal</th>
<th>Study design, Sample size, Follow-up</th>
<th>Outcome & characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Cooke RW, Nycyk JA, Okuonghuae H</td>
<td>Randomised control trial N=72 infants (37 were randomised to VM and 35 to control group)</td>
<td>In VM group 11 had 1 more episodes of CoNS bacteremia compared with 17 in control group. 2 babies in treatment group had more than one episode of CoNS bacteremia cf 9 in control group (p=0.02) 13 episodes of CoNS bacteremia in the VM group cf with 29 in control group Prophylaxis with intermittent low dose VM infusions may help reduce recurrent CoNS bacteremia in VLBW infants receiving PN</td>
<td>Good to Fair</td>
</tr>
<tr>
<td>11</td>
<td>Moller JC, Nelskamp I, Jensen R</td>
<td>Prospective randomised study N=55 infants</td>
<td>Infants after 4th day of life or after eventual therapy of early onset sepsis were included 27 were given VM and 28 were given teicoplanin. There were no cases of blood C&S positive sepsis cf CoNS sepsis rate of 24% in institution . Teicoplanin is preventing CoNS sepsis as well as VM</td>
<td>Good to Fair</td>
</tr>
<tr>
<td>12</td>
<td>Burton KM, Pritchard MA, Frawley WH</td>
<td>Prospective control N= 73</td>
<td>4 days of antibiotic therapy plus a 24 hour observation for selected cases of neonatal pneumonia comparable to 7 days of therapy. Recommended additional studies to assess the safety and benefits.</td>
<td>Good to Fair</td>
</tr>
<tr>
<td>13</td>
<td>Tay ST, Boo NY, Khoo TB</td>
<td>Cohort study N=182 infants</td>
<td>U. urealyticum was isolated from ET aspirates of 39 (21.4%) of 182 infants with RDS requiring ventilator support. All organisms were sensitive to erythromycin but resistant to lincomycin and sulphamethaxazole trimethoprim. All except 1 were sensitive to tetracycline and minocycline. U urealyticum is a common isolate in the ET aspirates of infants with respiratory distress</td>
<td>Fair</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal</td>
<td>Study design, Sample size, Follow-up</td>
<td>Outcome & characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>--------------------------------------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>14</td>
<td>Cordero L, Sananes M, Ayers LW</td>
<td>Controlled prospective study</td>
<td>GNB airway colonization is associated with morbidity and mortality. 64 other infants GNB bloodstream infection as antibiotic treatment outcome group. Gentamicin alone or with ceftazidime, ceftazidime, piperacillin in combination with tazobactam or tobramycin and tobramycin in combination with ampicillin/sulbactem or mezlocillin. Systemic antibiotics failed to eradicate GNB colonization in 97% of cases. Its empirical use for the prophylaxis or treatment of airway colonization discouraged</td>
<td>Fair</td>
</tr>
<tr>
<td>15</td>
<td>Joshi SG; Ghole VS; Niphadkar KB</td>
<td>Prospective study</td>
<td>In 67.8% cases of gram negative bacteremia – the predominant were Ps. aeruginosa (38.3%), Klebsiella pneumonia, E. Coli (15.6%) and Acinetobacter (7.8%) 59% were inborn babies prematurity and LBW in 60% of the neonates mortality was 32%. Increased resistance to extended spectrum cephalosporins (25%-755), piperacillin (68-78%) and gentamicin (23-69%). Combination of ampicillin and sulbactam with amikacin or ampi and sulbactam and ciproflox is most effective</td>
<td>Poor</td>
</tr>
<tr>
<td>16</td>
<td>Musoke RN, Revathi G</td>
<td>Observational</td>
<td>16.7% had positive blood cultures of which 73.6% were gram negative organisms. Klebsiella was the predominant organism -31%. The case fatality rate was 41%. Resistance to gentamicin was 20%, CMXC was 23.6%, amoxicillin/ampicillin 66.3%. Cefazidime 19.1%, cefuroxime 21.3%. Contributory factors to increased resistance include non ix of infants put on antibiotics (50%) prolonged (73%) unjustified (41%) non utilisation of ix when these are done(52%) and delay in getting results in ward (6 days)</td>
<td>Poor</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal</td>
<td>Study design, Sample size, Follow-up</td>
<td>Outcome & characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>--------------------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 17 | Oral R; Akisu M; Kultursay N
Neonatal Klebsiella pneumonia sepsis and imipenem/cilastin
N=44 infants | Efficacy and safety of imipenem/cilastin in neonatal Klebsiella pneumonia sepsis was investigated in 45 infants cf 39 control infants on conventional antibiotic regime. Sensitivity to imipenem 94%, cephoxitin (88%) quinolones (80%) amikacin (52%). 5 vs 27 infants were unresponsive to treatment and died the cure rates were 73% AND 28% respectively. The most common adverse effect of imipenem/cilastin were Candida albicans superinfection (20%). Imipenem is a good alternative for neonatal Klebsiella pneumonia however there is an increased risk of C. albicans infection | Poor |
| 18 | De Man P; Verhoevan BA
An antibiotic policy to prevent emergence of resistant bacilli
Lancet 2000 mar 18; 355 (9208):973-8 | Prospective study
N=436, 218 in each NICU(2 NICU were assigned different empiric antibiotic regimes unit A Pen G and tobramycin for early onset sepsis; flucloxacillin and tobramycin for late onset septicemia).
Unit B iv amoxicillin with cefotaxime used. After 6 months the regimes were interchanged. 3 neonates with Pen tobramycin regimen were colonised with bacilli resistant to empirical therapy vs 41 neonates in amox cefotaxime group. Enterobacter cloacae predominant bacilli in amox cefotaxime group. E.coli predominant bacilli in pen tobra group. Policies regarding the empiric use of antibiotics do matter in the control of antimicrobial resistance. a regime avoiding amoxicillin and cefotaxime restricts the resistance problem | Poor |
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal</th>
<th>Study design, Sample size, Follow-up</th>
<th>Outcome & characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
</table>
| 19 | Dellagrammaticas HD Christodoulou C
Treatment of gram negative bacterial meningitis in term neonates with third generation cephalosporin plus amikacin
Biol Neonate 2000 mar 77(3): 139-46 | Retrospective uncontrolled study
N=72 infants
F/up: 6 months | All isolates were sensitive to cefotaxime or ceftazidime and amikacin. Predominant organism was E.coli (68%). Survival at discharge was 97.2 % at discharge. Ventriculitis in 10% infants, 1.3% developed hydrocephalus, 1.3 % with P.mirabilis developed brain abscess with relapse of meningitis. 91.1% of the infants were normal at 6 months. 92.3% of the infants were normal at 6 years. Strongly support the use of 3rd generation cephalosporin and amikacin for treatment of Gm –ve bacterial meningitis | Poor |
| 20 | Khaneja M, Naprawa J
Successful treatment of late onset infection due to resistant Klebsiella pneumonia in an extremely LBW infant using ciprofloxacin
J. Perinatology 1999 Jun 19 (4): 311-4 | Clinical case report | Infant sepsis and meningitis from multidrug resistant K. Pneumonia. Treated with cipro and gent
Risk to damage to cartilage occurs rarely if at all in peds patients. Concl: Use restricted to treatment of serious infection for which an alternative antibiotic is not available | Poor |
| 21 | Hitomi S, Kubota M, Mori N
Control of MRSA outbreak in 9 neonatal ICU by unselective use of mupirocin ointment
F/U – 10 years | Carrier patients at any sites – intransal ointment 3X daily for 3 days (eradication); 3X weekly (prophylactic). Administration executed for a month. Weekly nasal swabs was taken till end of December. MRSA undetectable in all but 1 intubated inpatient. Conc- as neither an increase in MIC nor adverse reaction noted, this procedure is an effective method of controlling MRSA in NICU when outbreak cannot be managed with conventional measures. | Poor |
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal</th>
<th>Study design, Sample size, Follow-up</th>
<th>Outcome & characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
</table>
| 22 | Roiledes E, Kyriakides G | Case control study | Neonates with septicemia due to K. Pneumonia were matched 1:1 with neonates without septicemia (31) pairs or with neonates with septicemia due to other organism (8) pairs according to birth weight & time of admission. All Klebsiella p isolated were resistant to aminoglycosides , 3rd generation cephalosporins and atreonam but sensitive to impenem and ciprofloxacin. Factors associated with septicemia
 a. Mechanical ventilation,
 b. Parenteral nutrition
 Enhanced infection control measures and a temporary change of antibiotic policy reduced this serious complication. | Poor |
<p>| 23 | Tuladhar R, Patole SK, Koh TH | Case report | Neonate (24 week gestation) with B. cereus infection with positive blood and bone marrow culture despite treatment with vancomycin, gentamycin, imipenem, clindamycin, ciprofol, 1 g and gest over 49 days died. Combination of vancomycin and gentamycin is appropriate for meningitis/ severe systemic infections of most bacillus series. | Poor |
| 24 | Chang Chien HY, Chiu NC, Li WC | Case series | Most common organism was GBS (31.8%), E.coli (20%), Proteus mirabilis (7.1%), Enterobacter cloacae (5.9%), other strep including excluding S. pneumonia (5.9%), Chryseobacterium menigosepticum (5.9%), enterococci (4.7%), K pneumonia (3.5%). Ampicillin/ cefotamime were most commonly used antibiotics. Since 1991, GBS has over taken E coli as leading cause of meningitis. The results highlight the importance of developing strategies to prevent group B strep infection. | Poor |</p>
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal</th>
<th>Study design, Sample size, Follow-up</th>
<th>Outcome & characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
</table>
| 25 | Escobar GJ, Li DK, Armstrong MA
Neonatal sepsis workups in infants >/=2000gm at birth. A population based study
Pediatrics 2000 Aug; 106 (2 pt 1): 256:63 | Retrospective cohort study
N=2758
F/U: 1/52 | The risk of bacterial infection in the asymptomatic infant is low. Evidence based observation & treatment protocols could be defined based on limited set of predictors- maternal fever, chorioamnionitis, initial neonatal examination and absolute neutrophil count. | Fair |
| 26 | Lin FY, Mureen PJ, Azimi PH, Weisman LE, Philips JB, Regan J
Clin. Infect. Disc 2000 Jul; 31(1) 76-9 | Observational
Antibiotic susceptibility profiles were analysed for 119 invasive & 227 colonising strains of group B streptococci isolated from neonates at 6 academic centers. All strains susceptible to penicillin, vancomycin, chloramphenicol and cefotaxime. Rate of resistance to erythromycin (20.2%), clindamycin (6.9%). Type V strains more resistant erythromycin than type Ia | Poor |
| 27 | Akindele JA, Rotilu IO
Outbreak of neonatal Klebsiella septicemia a review of antimicrobial sensitivities
Afr. J. Med. Sci 1997 Mar-Jun; 26 (1-2):51-3 | Prospective observational study | K. Pneumonia (46.2%), K. Aerogenes (43.6%), K. Edwardsii (7.7%), K. Oxytoca (2.5%). All strains sensitive to ciprofloxacin and oxflaxcin but resistant to ampicillin. Sensitivities: 41% ceftazidime, 36% cefotaxime, 31%ceftriazone, 23% cefuroxime, 21% gentamycin, 15% kanamycin | Poor |
| 28 | Boswald M, Dobig C, Kandler C
Pharmokinetic & clinical evaluation of serious infections in premature & newborn infants under therapy with impenam and cilastatin
Infection 1999; 27 (4-5): 299-304 | Retrospective case series
N=104 premature and newborn | A total daily dose of 50 mg/kg for premature and newborn infant divided into 2 doses led to impenem peak concentrations of 17.7mg/&9.2mg/(range 1.95-3.80.5) trough 2.35mg/&1.02 (range2.34-10.8) in premature peak 20.6#10.8 (range 0.16-0.94) in newborn. Seizures in 8.9% patient cf 5.8% of premature &NB with serious nosocomial infection even after failure of other broad spectrum antibiotics. | Poor |
| 29 | Aitmhand R, Moustaoui N
Serotypes & antimicrobial susceptibility of 59-streptococcus agalactiae isolates from Feb 1992 to July 1997 studied. All strains susceptible to pen G, | Observational | Serotypes and level of antibiotic resistance of 59-streptococcus agalactiae isolates from Feb 1992 to July 1997 studied. All strains susceptible to pen G, | Poor |
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal</th>
<th>Study design, Sample size, Follow-up</th>
<th>Outcome & characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>No Author, Title, Journal</td>
<td>Study design, Sample size, Follow-up</td>
<td>cefotaxime, ampicillin, 1 strain resistant to erythromycin. No high level resistance to gentamicin. The antibiotic susceptibility patterns support the recommended treatment & prophylaxis of invasive group B streptococcal.</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>De Hoog M, Schoemaker RC, Mouton JW Vancomycin population pharmacokinetics in neonates</td>
<td>Retrospective study with prospective validation (? Case series) N=108 infants</td>
<td>108 newborns with suspected central line related septicemia during the first month of life-received 30mg/kg/day of vancomycin divided into 2 doses regardless of gestation/ postconceptual age. Trough & peak vancomycin S. conc determined before & after 3rd dose. 34.3 % of measured trough concentrations and 17.6 % of peak concentrations were outside therapeutic range. Simulation of various dosing schemes, schedule of 30 mg/kg/d irrespective of G.A in doses was optimal. This was prospectively tested. This lead to adequate vancomycin trough S.conc. & peak concentration and there is no need for routine monitoring of peak serum conc.</td>
<td>?8</td>
</tr>
<tr>
<td>31</td>
<td>Anwer SK, Mustafa S Rapid identification of neonatal sepsis</td>
<td>Observational study N=50 NN</td>
<td>5 tests – total leucocyte count, absolute neutrophil count, immature/Total neutrophil ratio, platelet count, C reactive protein were used. CRP & absolute neutrophil count had a sensitivity of over 60 % with a specificity of 50 %. WBC had a specificity of 93 % but sensitivity of 14 %. Conc: None reliable alone. In combination, 5 tests may help to diagnose sepsis within a few hours. If high negative predictive value, neonates discharged early, stopping antibiotics hence reducing cost of treatment & anxiety of family.</td>
<td>8</td>
</tr>
<tr>
<td>32</td>
<td>Anwer SK, Mustafa S, Pariyani S Neonatal sepsis an etiological study</td>
<td>Prospective, Observational</td>
<td>In early onset gm (-) ve & gm+ve organism were 33 and 35. Among gram (-)ve organisms, most of them were Klebsiella sp. Enterococcus was commonest gram</td>
<td>8</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal</td>
<td>Study design, Sample size, Follow-up</td>
<td>Outcome & characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>--------------------------------------</td>
<td>---------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>33</td>
<td>Ozkan H; Pasaoglu G, Olagac N</td>
<td>Case report</td>
<td>Patients compromised by debilitating illnesses, surgical procedures/indwelling vascular catheters are prone to S. maltophilia infections. 1st case of S. maltophilia in a premature infant of 31 weeks of gestational age. Patient successfully treated by amikacin.</td>
<td>Poor</td>
</tr>
<tr>
<td>34</td>
<td>Peters SM; Bryan J Cole MF</td>
<td>Observational</td>
<td>RIC PCR was used to examine 111 E. cloacae isolates from 17 patients including 81 from surveillance cultures, 23 from E.T.T, 3 from eyes, 1 each from blood, urine skin, throat. 1161 isolates were susceptible to imipenam/cipro 50 isolates susceptible to all antibiotics except for aminopenicillin & 1st generation cephalosporin. Highly antibiotic resistant E cloacae may emerge during an outbreak.</td>
<td>Poor</td>
</tr>
<tr>
<td>35</td>
<td>Ranu SS, Valencia GB, Piecuch S</td>
<td>Case report</td>
<td>Choriamnionitis due to M.m. in a mother who presented with ruptured membranes at 24 weeks gestation and was treated with dexamethasone and prophylactic ampicillin. Infant developed severe early onset neutropenia, thrombocytopenia and severe acidosis and expired. Patient was on GM to which the organism was sensitive.</td>
<td>Poor</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal</td>
<td>Study design, Sample size, Follow-up</td>
<td>Outcome & characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------</td>
<td>--------------------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 36 | Pauli I, Shekhawat P, Kehl S
Early detection of bacteremia in the neonatal ICU using BACTEC system
J. Perinatal 1999,Mar; 19(2);.127-31 | Retrospective Review
Observational
N=25 infants | Gentamicin failed to sterilize the infants blood / body fluids hence a combination of aminoglycoside and a 3rd generation cephalosporin such as cefotaxime is necessary.
15 % were positive cultures out of these, 64 % were coag. (-) ve staphy, 14 % viridans, strept , 8 % E. coli, 40 % Enterococcus, 4% Ps. Sp, 2 % enterobacter sp, 2 % Klebsiella sp, 20 % c. albicans. 54 % of cultures were detected positive at 18 hrs, 71 % at 24 hrs 100% by 30 hrs.. BACTEC helps with early identification of neonatal bacteremia (in 24-30 hrs) with gm (-) ve organism detected earlier than Gram +ve organism, This will allow earlier diagnosis, appropriate treatment of the potentially bacteremic & bacteremic infant. | Poor |
| 37 | Traub WH; Schwarze 1 Baver D
Nosocomial outbreak of cross infection due to multiple antibiotic resistant Klebsiella pneumonia
Characterization of the strain & antibiotic susceptibility studies.
Chemotherapy 2000 J-Feb ; 46(1) 1-14 | Observational | Multiple antibiotic resistant(MAR) strain of Klebsiella pneumonia colonized neonates of 2 words with several cases of systemic infection.. Organism resistant cefotaxime, ceftazidime, aminoglycoside including amikacin. The isolates were identical & susceptible to carbapenem (meropenem more effective than imipenem) fluoroquinolones (ciprofloxacin & trovafloxacin) and polymixin B | Poor |
| 38 | Karunasekera KA; Pathirana D
A preliminary study on neonatal septicemia in a 3 ‘ referral Paediatric Unit
Ceylon Med J. 1999 Jun; 44(2): 81-6 | Cross sectional study
N=98 | 98 babies had septicemia, Incidence 24.4 /1000 LB CFR 11.2 % , Incidence higher in preterm, LBW, instrumental delivery. 21.4 % developed septicemia D1, 74.5 % D2.7;4.1 % after W1. Common bacteria-Klebsiella 26.5 %; Staph aureus 15.3 %,coliform bacilli 9.2 %, spore forming bacilli 9.2 %, Common sensitive antibiotics amikacin 88.9 %, amoxy & clavulonic acid 83%, ceftriaxone 78.1 % and netilmicin 63 %. Concl : Septicemia an important cause of morbidity particularly preterm babies, LBW, | Poor |
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal</th>
<th>Study design, Sample size, Follow-up</th>
<th>Outcome & characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Linder N, Raz M Sirota L</td>
<td>Review</td>
<td>The increase in no of cases of unexplained neonatal fever seems to be associated with the introduction of routine hep B vaccination in D1. A controlled study needed to confirm this finding.</td>
<td>Poor</td>
</tr>
<tr>
<td>40</td>
<td>Van der zwet, MC; Parlexliet GA</td>
<td>Case control study</td>
<td>13 neonates were colonized and 3 of them because infected. Care control study conducted to identify risk factors associated with acquisition of gentamicin resistant K. pneumonia. Risk factors were low GA, BW (need more care and handling) increased length of stay. Outbreak stopped by replacing gentamicin by amikacin as the antibiotic of first choice whenever the use of aminoglycoside was indicated.</td>
<td>Poor</td>
</tr>
<tr>
<td>41</td>
<td>Kotze.A, Bartel PR, Sommers OK</td>
<td>A controlled randomized prospective study N=40</td>
<td>15 patients in once daily group and 12 patients in b.d group showed at least one period of renal function impairment (decline of less than 50% of expected physiological drop in S.creatinine over time) while in hospital. This decreased to 5/16 and 4/10 during follow up. Differences not statistically significant. BSE potential did not find signs of ototoxicity at any time. In full term neonatal patients once daily dosing of amikacin is no more toxic than the twice daily regime.</td>
<td>Good to Fair</td>
</tr>
<tr>
<td>42</td>
<td>Ako Nal AK, Adejuyigbe EA</td>
<td>Observational</td>
<td>Incidence of septicemia among neonates as being at high risk was 55% in Ile Ife Nigeria. Gram (+) ve organisms (S. aureus specifically) were</td>
<td>Poor</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal</td>
<td>Study design, Sample size, Follow-up</td>
<td>Outcome & characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>--------------------------------------</td>
<td>--------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>43</td>
<td>Royle J, Halasz S, Eagles G, Royal Alexandra Hospital for children, Australia Outbreak of extended spectrum B lactamase producing Klebsiella Pneumonia in a NNU</td>
<td>Case series</td>
<td>Outbreak & ESBL Klebsiella in NNU – 7 cases with 2 deaths. Control of outbreak was achieved by altered empiric antibiotic treatment for late onset sepsis ie imipenem/vancomycin over vancomycin and gentamicin and prevention of cross infection by strict attention to hand washing. No further episodes of sepsis occurred.</td>
<td>Poor</td>
</tr>
<tr>
<td>44</td>
<td>Sadow KB, Derr R, Teach SJ Bacterial infections in infants 60 days and younger: epidemiology, resistance and implications for treatment.</td>
<td>Retrospective case series All positive blood/urine, CSF cultures in children 60 days or younger from 1.1.94-31.12.97 from inpatients and patients initially evaluated in ED</td>
<td>1) GNR (79.3 %), group B strept (11.6%) enterococcus (5.8%), S. pneumonia (2.5%), N. meningitis (0.8%). No listeria was isolated. Of the GNR, 62.5 % were ampicillin resistant. All sensitive to gentamicin & cefotaxime. Conc: 1) No listeria 2) GNR-60 % ampicillin resistant. Empiric use of ampicillin as part of combination for presumed bacterial infection in patients 60 days or younger neither necessary nor</td>
<td>Poor</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal</td>
<td>Study design, Sample size, Follow-up</td>
<td>Outcome & characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------</td>
<td>--------------------------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 45 | Lundergan FS; Glasscock GF Kim EH
Once daily gentamicin dosing in newborn infants
Pediatrics 1999 Jun 103 (6 pt 1): 1228-34 | Comparative Cohort study | In LBW neonates, the regime resulted in peak & trough SDL throughout therapy that were similar to those observed in the control group. Delaying the initiation of maintenance once daily dosing until 36-48 hours after loading dose would be expected to result in a higher incidence of initial trough SDL in target range for VLBW neonates. | Fair |
| 46 | Ocete E, Ruiz Extremera A, Golcoechea A
Low dosage prophylactic vancomycin in central venous catheters for neonates
Early Hum. Dev. 1998, Dec 53 Suppl (4 pt 1) 5181-6 | Case series | Negative coagulase staphylococcus is the principal pathogen in most neonatal ICU. Efficacy of prophylactic use of vancomycin in preterm babies receiving parenteral nutrition evaluated period over 1 year. Prophylaxis reduced incidence of gram positive infections. | Poor |
| 47 | Kaushik SL, Parmer VR
Neonatal sepsis in hospital born babies
J. Comm. Dis 1998 Sep 30 (3) 147-52 | Observational | Incidence of neonatal sepsis in a study in hospital born babies was 5.3% (10.9%) higher in LBW cf normal B.W babies. Sepsis related mortality also exceeded in LBW babies. Positive cultures in 36.7% of babies with sepsis. Organisms were. Staph pyogenes (40%), Ecoli (27.5%), Klebsiella sp (15%), Staph epidermidis (100%), Enterobacter sp (7.5%), Gram negative bacilli predominated in early onset (<72 hrs) & gram positive cocci in late onset, Isolates resistant to routinely used antibiotics (penicillin, ampicillin, and gentamicin). 3rd generation cephalosporin & aminoglycosides were found to be effective in treatment of neonatal sepsis. | Poor |
| 48 | Davies MW, Cartwright DW
Gentamicin dosage intervals in neonates: longer | Retrospective observational Study | Data collected on BW; gestation, gentamicin dose, trough level of gentamicin, s. creatinine & urine output. Trough serum gentamicin level of > or =1.5 | Poor |
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal</th>
<th>Study design, Sample size, Follow-up</th>
<th>Outcome & characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>Rowen JL, Tate JM</td>
<td>Consensus</td>
<td>95% of respondents cared for an infant with systemic candidiasis in past 2 years. Fluconazole used to some extent by 90% Liposomal amphotericin by 69%. Single blood c+s positive for candida led to immediate treatment by 99%. Amphotericin B was preferred therapy for candidemia (88%) in ill infants. > 80% would request for CSF, urine and repeat blood c+s, ophthalmologic examination in evaluation of candidemia. If CSF c+s were positive, 25% would be amphotericin B alone 62% would add fluconosine. If urine c+s was positive only 66% would use a single positive SPA as grounds for treatment. 3.No consensus or duration of therapy, amphotericin B test dose or mx of a central catheter during a candidemia. Con: Agreement that prompt therapy with amphotericin B is required if a blood cultures is positive for candida and</td>
<td>Poor</td>
</tr>
</tbody>
</table>

dosage interval – less toxicity

J. Pediatr Child Health 1998 Dec; 34 (6): 577-80

N=Neonates born between 1/7/95 – 31/12/95 who received gentamicin

mg/L was considered toxic. 21 infants in 24-29/52 gestation received Gm with a dosage interval of 24 hrs. 16 infants had toxic trough serum gentamicin level. (76%). In 30-34/52: 8 infants had GM 12 hourly and all had toxic. Trough S.G.M levels – 14 infants had GM 18 hourly and 13 had toxic trough. (93%) SGM levels – 61 infants had GM 24 hrsly and 25 had toxic trough S.G.M (41%). In > or=35/week, 29 infants had gm 12 hours and 25 had toxic trough SGM (86%). 6 had GM 18 hourly and 2 (33%) had toxic trough SGM levels.31 infants had GM 24 hourly and 4 (13%) had toxic trough S.G.M levels. Concl: A starting gentamicin dosage interval of 12 h in infants of any gestational age or a starting dosage interval of 24 h for infants < 30/52 GA, leads to most having toxic trough S.G.M levels. In infants 30/52 GA or greater most have safe non-toxic trough SGM levels if started on a dosage interval of 24 h.
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal</th>
<th>Study design, Sample size, Follow-up</th>
<th>Outcome & characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Finnstrom O, Isaksson B</td>
<td>Case Series N= patients</td>
<td>2 outbreaks of colonisation and infection with E. cloacae resistant to 3rd generation cephalosporins within 12 months. Replacing ampicillin plus cefotaxime as standard empiric therapy with pen G + t netilmicin and consequent cohorting of newborn and staff halted the outbreaks. The next 5 years no further outbreaks of CREC reported.</td>
<td>Poor</td>
</tr>
<tr>
<td>51</td>
<td>Egri OkwajiMT; Iroha EO</td>
<td>Observational N=105</td>
<td>Neonates admitted for tetanus were screened for sepsis. Presence of omphalitis/poor color, hypothermia and hypothermia were sensitive predictors of septicemia 50 pathogens isolated from 50 babies. Klebsiella preum (20.7%) Enterobacter cloacae (19%), Staph aurous 19.2 % Antimicrobial susceptibility favoured ofloxacin but combination of clox / gentamicin recommend., Cefazidime with about 60 % susceptibility across board is the favoured cephalosporin.</td>
<td>Poor</td>
</tr>
<tr>
<td>52</td>
<td>Van den Vever HL; Vers teegh FG</td>
<td>Case report</td>
<td>Ciprofloxacin treatment of preterm/LBW infants infected with E cloaca, Ps aeruginosa, K. pneumonia resistant to other antibiotics.</td>
<td>Poor</td>
</tr>
<tr>
<td>53</td>
<td>Groll All, Jauger G</td>
<td>Case report</td>
<td>11/44 – primary cutaneous aspergillosis 14/44- disseminated disease 10/44 – pulmonary aspergillosis Overall survival 73 %. Majority of underlying conditions were prematurity, CGD, complex diarrhoea, malnutrition and invasive bacterial infections. 41% of</td>
<td>Poor</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal</td>
<td>Study design, Sample size, Follow-up</td>
<td>Outcome & characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>54</td>
<td>Fallat ME, Gallinaro RN</td>
<td>Central venous catheter blood stream infections in the NICU J. Pediatr Surg 1998 Sep; 33(9): 1383-7</td>
<td>Retrospective cohort study N=157</td>
<td>Factors that significantly decreased the incidence of CVC BSI were increasing G. Age at time of insertion, associated vancomycin at time of catheter placement, fewer days of catheter use. Concerns about emergence of vancomycin resistant organisms preclude support of its use as a prophylactic agent</td>
</tr>
<tr>
<td>55</td>
<td>Yurdakok M</td>
<td>Antibiotic use in neonatal sepsis Turk J.Pediatr 1998 Jan-Mar; 40(1): 17-33</td>
<td></td>
<td>If neonates has pneumonia/sepsis antibiotic should not be stopped although cultures negative. Duration of therapy depends on initial response to antibiotics but should be 10-14 days in most infants with sepsis & minimal/absent focal infection. Infants who developed sepsis in 1st week of life empirical therapy must cover group B strept. Enterobacteriaceae (Esp. Ecoli) & Listeria monocytogenes. Penicillin or ampicillin and an aminoglycoside are usually effective. Empirical antibiotic therapy for infants who developed sepsis beyond the 1st days of life must cover the organisms with early onset sepsis as well as hospital acquired pathogens - Staphylococci, Enterococci, Ps. Aeruginosa. Pen/ampicillin and aminoglycoside may be used in nosocomial infections, netilmicin or amikacin preferred in cases with increased risk of staphylococcal infection (vascular catheter) or Pseudomonas infection (skin lesions) – antistaphylococcal or anti Ps. Agents used. 3 rd gen. Cephalosporins should not be used in initial therapy of suspected sepsis emergence of drug resistant</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal</td>
<td>Study design, Sample size, Follow-up</td>
<td>Outcome & characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>-------------------------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 56 | Krishnan L, George SA
Gentamicin therapy in preterm : a comparison of 2 dosage regimens
Indian Pediatr, 1997 Dec;34 (12) :1075-80 | Randomised double blind study
N=18
F/up: Jan 1994-May 1994 | Optimum therapeutic peak level after the 1st dose was achieved only with once daily gentamicin regimen
Mean 5.88 Vs 3.88 ug/ml
Mean peak levels were not significantly different in either regime. None of neonates showed nephrotoxicity.
Once daily dose 4mg/kg of gentamicin has logistic & monetary benefits in addition to the obvious pharmacokinetic advantage. | Good to Fair |
| 57 | Matral- Kovalskis Y, Greenberg D,Shinwell ES
Positive blood culture for coagulase negative staphylococci in neonates: does highly selective vancomycin usage affect outcome
N= 239 episodes
F/up: 1990-1996 | VM administered in 22 episodes after identification of bacteria. Others mx without antibiotics or empiric antibiotic therapy (usually ceftazidime + ampicillin) for suspected sepsis.
Severity of initially illness, subsequent morbidity and mortality were low regardless of treatment. Only 1 case of blood borne VR gram positive organism was observed during study period. Hence a policy of highly selective VM usage supported. | Fair |
<p>| 58 | Weitkamp JH, Poets CF | N=21 VLBW | Systemic fungal infection occurs in 2-4.5 % VLBW | Poor |</p>
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal</th>
<th>Study design, Sample size, Follow-up</th>
<th>Outcome & characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
</table>
| 59 | Scarcella A, Pasquariello MB
Liposomal amphotericin B treatment for neonatal fungal infections
Pediatr Infect Dis J. 1998 Feb 17 (2); 146-8 | N=40 premature | Liposomal encapsulated amphotericin B (Am Bisome) given to 40 premature (mean BW 1090-/+313.6g, mean GA 28.35+2.13 weeks and 4 full term mean birth weight, 3080 +118g, mean gestational age 39 +0.7 weeks with severe fungal infections
Candida Albicans most frequent fungus isolated (70%). Administration of ambisome effective in 72.7% of patients. 5 of 6 cases of meningitis recovered. 63 | Poor |
| 60 | Ocete E, Ruiz - Extremera A
Low dosage vancomycin in CV central venous catheters for neonates
Early Human Dev 1998 Dec 53 Suppl 5181 - 6 | Prospective control trial | Negative coagulase staphylococcus is the principal pathogen in most NICU.
Evaluate efficacy of prophylactic vancomycin administered via catheters significantly reduced incidence of Gram + ve infections. | Poor |
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal</th>
<th>Study design, Sample size, Follow-up</th>
<th>Outcome & characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
</table>
| 61 | Fallat ME, Giallinaro RN
Central venous catheter blood stream infections in NICU
J. Pediatr Surg 1998, Sep 33 (9): 1383-7 | Retrospective cohort study | 268 lines placed in 157 NICU over 29 months. 65 lines (24%) had confirmed CVC BSI. Common symptoms - fever 49 %, pulmonary dysfunction 30 %
S. Epidermidis most common organism. Factors significantly decreased the incidence of (VS BSI were increasing EGA
associated vancomycin use at the time of catheter placement
fever drip of catheter use
Concerns regarding emergence of VR organisms preclude support of its use as a prophylactic agent. | Fair |
| 62 | Degrease PL, Bemoan GH
Use of teicoplanin in preterm neonates with staphylococcal late onset neonatal sepsis.
Boil Neonate 1998; 73(5):287-94 | Nonrandomised descriptive study
N= 23 preterm neonates | Subjects was suspected of late on set septicemia. 21 cultures proven to have septicemia. 20 were caused by staphylococci.
Teicoplanin loading dose was 15 mg/kg iv. Followed by maintenance dose of 8 mg/kg every 24 hours. Iv gentamicin administered also pending blood culture. Peak & trough level averaged 27.8 & 12.3 mg/L. microbiological & clinical cure rates were 90 % in gram positive septicemia. No apparent toxicity was noted. | Poor |
| 63 | Bhutta ZA
Gunolove resistant S. paratyphi & meningitis in a newborn
J. Infection 1997; Nov 35 (3); 308-10 | Case report | New reports of quinolone resistant strains of salmonella typhi or paratyphi from Indian subcontinent.
Case report of newborn with meningitis due to a quinolone resistant strains of S. paratyphi B presenting to Aga Khan U.H | Poor |
<table>
<thead>
<tr>
<th>No</th>
<th>Author, Title, Journal</th>
<th>Study design, Sample size, Follow-up</th>
<th>Outcome & characteristics</th>
<th>Grade and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>Cordero L, Sandnes M</td>
<td>Case review N=363 infants</td>
<td>Conc.: combination of ampi & genta for suspected every onset BSI: VM and gentamicin for late onset BSI has been successful suggest controlled ab program and periodic evaluation based on individual unit advisable.</td>
<td>Poor</td>
</tr>
<tr>
<td>65</td>
<td>Jacqueline Judith Ho</td>
<td>Observational study N=962 infants</td>
<td>Overall survival was 69%. Mortality 30.8% Rate of late onset infection 19.3% The most common infecting organism was Klebsiella pneumonia – 38.3% of infections, and 46.9 % of deaths in neonates with infection. This was followed by coagulase negative staphylococci – 17.6% of infections and deaths 12.2% The risk factors for late onset gram negative compared to gram-positive infection were endotracheal infection at birth and blood transfusion. Hypoglycemia was associated with gram-positive infection. Conc.: the late onset infection in Malaysian low birth weight infants does not differ fro that reported for developed counties but the mortality is higher. This could be because of an excess of gram-negative infections.</td>
<td>Poor</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal</td>
<td>Study design, Sample size, Follow-up</td>
<td>Outcome & characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>-------------------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>66</td>
<td>Kimberlin DW, Lin CY, Jacobs RF, Powell DA, Corey L, Gruber WC, Rathore M, Bradley JS, Diaz PS, Kumar M, Arvin AM, Gutierrez K, Shelton M, Weiner LB, Sleasman JW, de Sierra TM, Weller S, Soong SJ, Kiell J, Lakeman FD, Whitley RJ
Safety and efficacy of high-dose intravenous acyclovir in the management of neonatal herpes simplex virus infections.
Pediatrics 2001 Aug 108 920; 230-8</td>
<td>Cohort study
N=88
F/up: 4 years</td>
<td>1. 21% of 29 HD acyclovir recipients experienced neutropenia
2. Survival rate for patients with HD (high dose) acyclovir was higher cf previous study (NIAIDCASG) trial with SD (standard dose) acyclovir 3. Survival rates for patients with CNS disease were similar in SD/MD group 4. In recipients of HD acyclovir there was borderline significant decrease in morbidity Support use of 21 day HD IV acyclovir to treat neonatal CNS & disseminated HSV disease. Serial ANC should be made at least twice weekly</td>
<td>Fair</td>
</tr>
<tr>
<td>67</td>
<td>Kimberlin DW.
Advances in the treatment of neonatal herpes simplex infections.
Rev. Med Virol 2001 May-June 11 93 0 157-63</td>
<td>Review</td>
<td>Use of high dose acyclovir for the treatment of acute neonatal HSV disease has reduced mortality rates to their lowest level. Utilization of suppressive oral acyclovir following acute neonatal disease is another therapeutic option under investigation to improve morbidity outcome.</td>
<td>Poor</td>
</tr>
<tr>
<td>68</td>
<td>Huang YC, Lin TY, Lin YJ, Lien RI, Chou YH.
Prophylaxis of intravenous immunoglobulin and acyclovir in perinatal varicella.
Eur J Pediatr 2001 Feb; 160 92 0: 91-4</td>
<td>N= 39 (n= 24 newborn infants whose mother developed varicella rash within 14 days before & after delivery and n=15 newborn whose mother’s rash appeared within 7 days before & 5 days after delivery (at risk group)</td>
<td>In the at risk group – received IVIG (500 mg/kg/ dose or with IV acyclovir (5 mg/kg 8 hourly) for 5 days. 4 infants who received IVIG alone – 2 developed varicella None of 10 infants receiving both IVIG & ACV contracted varicella: 1 receiving ACV alone had no varicella. 9 infants in not at risk group, 4 had undetectable varicella-zoster virus antibody on admission & developed clinical varicella subsequently. Conc: Combination of IVIG & prophylactic acyclovir can effectively prevent perinatal varicella</td>
<td>Poor Small study</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Oram RJ, Marcellino D, Strauss D, Gustafson E, Talarico CL, Root AK, Sharma PL, Thompson K, Fingeroth JD, Crumpacker C, Herold C. Characterization of an acyclovir-resistant herpes simplex virus type 2 strain isolated from a premature neonate. Pediatric Infectious J Infect Dis 2000 Apr;181(4):1458-61. A premature infant with neurocutaneous HSV infection was treated for 21 days with acyclovir. Disseminated disease recurred 8 days later. A recurrent isolate was resistant to acyclovir. Acyclovir resistant HSV 2 mutants can develop rapidly in neonatal infection & cause clinical significant disease. Poor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Singalavanija S, Limponsanurak W, Horpoapan S, Ratrisawadi V. Neonatal Varicella: A report of 26 cases. J. Med. Assoc. Thai 1999 Oct 82 910 0 957-62. 12 cases had varicella from mothers infected between 6 days before delivery to 2 days after delivery. 14 cases were postnatal varicella. IV acyclovir given in high risk & severe cases (9 perinatal & 3 postnatal). No deaths. IV acyclovir was beneficial in treatment of neonatal varicella. Poor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Ogilvie MM. Antiviral prophylaxis and treatment in chickenpox. A review prepared for the UK Advisory Group on Chickenpox on behalf of the British Society for the Study of Infection. J Infect 1998 Jan;36 Suppl 1:31-8. IV acyclovir therapy for 5-10 days is effective for varicella in neonates & immune compromised and for varicella pneumonia or other complications in adults & children if begin early. Oral acyclovir is effective if begin within 24 hour of onset of rash. It is recommended for treatment of varicella in healthy adults & adolescents but not for routine use in children < 13 years unless they are sibling contacts/have other medical condition. Acyclovir has high therapeutic index & good safety profile. Poor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal</td>
<td>Study design, Sample size, Follow-up</td>
<td>Outcome & characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>-------------------------------------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>72</td>
<td>D'Andrea CC, Ferrera PC Disseminated herpes simplex virus infection in a neonate.</td>
<td>Case report</td>
<td>In neonates with sepsis, ampicillin with either an aminoglycoside or cefotaxime are chosen. Coverage for viral esp. HSV rarely given in ED. However, acyclovir/vidarabine has to be started in early stages to be effective. Broadening the indications for initiating antiviral therapy to include neonate whose mother has any history of STD may prevent sequelae of untreated or inadequately treated HSV</td>
<td>Poor</td>
</tr>
<tr>
<td>73</td>
<td>Norris CM, Danis PG, Gardner TD. Aseptic meningitis in the newborn and young infant.</td>
<td>Review</td>
<td>When toxic newborn/young infant presents with fever and lethargy or irritability, meningitis should be considered. Initial CSF results many not conclusively differentiate aseptic from bacterial meningitis & antimicrobial therapy for all likely organisms should be instituted including antivirals. Etiologies of aseptic meningitis include viral/partially treated bacterial meningitis, congenital infection, drug reaction, post vaccination, systemic disease & malignancy. Prompt diagnosis & treatment are essential.</td>
<td>Poor</td>
</tr>
<tr>
<td>74</td>
<td>Kesson AM. Use of acyclovir in herpes simplex virus infections.</td>
<td>Consensus</td>
<td>In most situations the use of acyclovir shortens duration of clinical illness & viral shedding & reduces morbidity & mortality. All life/sight threatening infections should be managed in inpatient hospital setting with intravenous therapy. Oral acyclovir is recommended in patients with non life threatening illness who may still have significant symptoms.</td>
<td>Poor</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal</td>
<td>Study design, Sample size, Follow-up</td>
<td>Outcome & characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>-------------------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>75</td>
<td>Swedish Consensus Group. Management of infections caused by respiratory syncytial virus. Scand J Infect Dis 2001;33(5):323-8</td>
<td>Comments</td>
<td>Ribavirin inhalation treatment may be considered in high risk infants with clinical symptoms indicating a serious course of RSV infection. Treatment with ribavirin in combination with intravenous polyclonal immunoglobin considered in patients who had received stem cell transplantation or organ transplantation with > 1 episode of rejection treatment and who have mild/moderate RSV pneumonia. Evidence based documentation for treatment of other groups is lacking.</td>
<td>Poor</td>
</tr>
<tr>
<td>76</td>
<td>Van Woensel JB, Kimpen JL, Brand PL. Respiratory tract infections caused by respiratory syncytial virus in children. Diagnosis and treatment. Minerva Pediatr 2001 Apr;53(2):99-106</td>
<td>Review</td>
<td>Based on current available evidence there is no place of ribavirin in routine treatment of RSV LRT. Corticosteroids may be useful in more severe RSV LRTI. Immunoglobulin have no place in the treatment of RSV LRTI</td>
<td>Poor</td>
</tr>
<tr>
<td>77</td>
<td>Greenough A. Recent advances in the management and prophylaxis of respiratory syncytial virus infection. Acta Paediatr Suppl 2001 Mar;90(436):11-4</td>
<td>Review</td>
<td>Overall the results of randomized trial do not support the use of bronchodilator corticosteroids or Ribavirin. Immuno prophylaxis should be reserved for infants at highest risk of severe RSV infection to be cost effective</td>
<td>Poor</td>
</tr>
<tr>
<td>78</td>
<td>Rodriguez WJ. Management strategies for respiratory syncytial virus infections in infants. J Pediatr 1999 Aug;135(2 Pt 2):45-50</td>
<td>Review</td>
<td>Several recent studies suggest that ribavirin may have beneficial effect on sequela although other studies failed to demonstrate any benefit. Management of RSV LRTI in infants is predominantly supportive & symptomatic.</td>
<td>Poor</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal</td>
<td>Study design, Sample size, Follow-up</td>
<td>Outcome & characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>-------------------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>79</td>
<td>Whitley RJ, Cloud G, Gruber W, Storch GA, Demmler GJ, Jacobs RF, Dankner W, Spector SA, Starr S, Pass RF, Stagno S, Britt WJ, Alford C Jr, Soong S, Zhou XJ, Sherrill L, FitzGerald JM, Sommadossi JP. Ganciclovir treatment of symptomatic congenital cytomegalovirus infection: results of a phase II study. National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. J Infect Dis 1997 May;175(5):1080-6</td>
<td>Case series N=47</td>
<td>Doses of 8/12 mg/kg of ganciclovir were administered in divided doses at 12 hourly interval for 6 weeks. Thrombocytopenia in 37 babies & neutropenia in 29 babies observed. Quantitative excretion of CMV in urine decreased but after cessation of therapy viruria returned. Therapy improvement or stabilization occurred in 5 babies at 6 months or later indicating efficacy.</td>
<td>Poor</td>
</tr>
<tr>
<td>80</td>
<td>Brown HL, Abernathy MP Cytomegalovirus infection. Semin Perinatol 1998 Aug; 22(4):260-6</td>
<td>Review</td>
<td>CMV results in severe injury to the fetus Mortality is 30 %. 80 % of survivors have severe neurological morbidity Antimicrobial therapy & immuno prophylaxis for CMV infection are unsatisfactory</td>
<td>Poor</td>
</tr>
<tr>
<td>81</td>
<td>Heuchan AM, Isaacs D. The management of varicella-zoster virus exposure and infection in pregnancy and the newborn period. Australasian Subgroup in Paediatric Infectious Diseases of the Australasian Society for Infectious Diseases. Med J Aust 2001 Mar, 19;174(6):288-92</td>
<td></td>
<td>ZIG Should be given to a baby whose mother develops chickenpox up to 7 days before delivery or up to 28 days after delivery. Iv acyclovir should be given to babies presenting unwell with chickenpox.</td>
<td>Poor</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal</td>
<td>Study design, Sample size, Follow-up</td>
<td>Outcome & characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>------------------------------------</td>
<td>--------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>82</td>
<td>Kesson AM. Management of neonatal herpes simplex virus infection. Paediatr Drugs 2001;3(2):81-90</td>
<td>Review</td>
<td>Treatment is recommended where diagnosis is confirmed or there is a high level of suspicion. The current recommendation is acyclovir 20 mg/kg 3 time daily by Iv Infusion. The newer anti herpes agents valacyclovir, famcyclovir after no advantage over acyclovir and are not recommended for neonatal HSV infection.</td>
<td>Poor</td>
</tr>
<tr>
<td>83</td>
<td>Bury RG Tudehope D Enteral antibiotics in preventing NEC in LBW or preterm infants Cohrance Database System Rev 2000; 2: CD00405</td>
<td>Cochrance review</td>
<td>There is insufficient evidence to support the use of enteral antibiotic prophylaxis for NEC in clinical practice. To address this question further, a large trial would be required with a sample size sufficient to examine all the important benefits and harms. Adverse outcomes associated with infection, particularly with resistant bacteria, should be evaluated.</td>
<td>Good</td>
</tr>
<tr>
<td>84</td>
<td>Koc E, Turkkyilmaz C, Atalay Y Sen E Imipenem for treatment of relapsing Salmonella meningitis in a newborn infant Acta Paediatric Jpn 1997 Oct; 39 (5):624-5</td>
<td>Case report</td>
<td>Salmonella meningitis is a rare clinical entity that occurs mainly during early infancy. Treatment of Salmonella infections may be complicated by the bacteria's growing resistance to clinically important antimicrobial agents, especially third-generation cephalosporins. A report is presented of a newborn infant with Salmonella meningitis who relapsed after 4 weeks of cefotaxime treatment and was cured completely with imipenem cilastatin therapy</td>
<td>Poor</td>
</tr>
<tr>
<td>No</td>
<td>Author, Title, Journal</td>
<td>Study design, Sample size, Follow-up</td>
<td>Outcome & characteristics</td>
<td>Grade and Comments</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>--------------------------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 85 | Bhat KG, Paul C, Bhat MG
Neonatal bacteremia due to high level aminoglycoside resistant (HLAR) enterococci
Indian j Paediatric 1997 Jul- Aug; 64(4):537-9 | Case study
N= 41 | 85.4% were Enterococcus faecalis and 14.6% were Enterococcus faecium. A total of 8.6% strains of E. faecalis and 33.3% E. faecium strains showed high level aminoglycoside resistance (HLAR). None of the enterococci tested were vancomycin resistant. Drug resistance was more common among E. faecium strains. All clinically significant isolates of enterococci should be tested for their antibiotic sensitivity pattern including HLAR, and for treatment, antibiotics are selected based on in vitro antibiotic sensitivity test results. | Poor |
| 86 | Jacob RF
Neontal herpes simplex virus infections
Semin Perinatol 1998 Feb; 22(1):64-71 | Review | No differences in outcome were seen between neonates treated with vidarabine and acyclovir. More recently, administration of oral acyclovir has been demonstrated to prevent cutaneous recurrences of HSV after neonatal SEM disease. Although promising, this investigational protocol requires further evaluation before a routine recommendation for prophylactic therapy with oral acyclovir can be made. Oral acyclovir able to prevent recurrences of HSV after neonatal skin, ear and mouth infections | Fair to good |
| 87 | Di Pentima MC, Mason EO Jr, Kaplan SL
In vitro antibiotic synergy against Flavobacterium meningosepticum: implications for therapeutic options.
Clin Infect Dis 1998 May;26(5):1169-76 | Review of case reports | Flavobacterium meningosepticum is an unusual, highly resistant, gram-negative bacillus that is associated with neonatal meningitis and nursery outbreaks of meningitis. These results support the clinical evidence that the combination of vancomycin and rifampin is an appropriate regimen for neonatal meningitis due to F. meningosepticum. The combination of meropenem and vancomycin was antagonistic. The clinical efficacy of combinations including ciprofloxacin, newer quinolones, or linezolid for treating F. meningosepticum meningitis deserves further study. | Poor |